WANG Shujie, LI Huaiming, ZHAI Shikui, YU Zenghui, SHAO Zongze, CAI Zongwei. Mineralogical characteristics of polymetallic sulfides from the Deyin-1 hydrothermal field near 15°S, southern Mid-Atlantic Ridge[J]. Acta Oceanologica Sinica, 2017, 36(2): 22-34. doi: 10.1007/s13131-016-0961-3
Citation: WANG Shujie, LI Huaiming, ZHAI Shikui, YU Zenghui, SHAO Zongze, CAI Zongwei. Mineralogical characteristics of polymetallic sulfides from the Deyin-1 hydrothermal field near 15°S, southern Mid-Atlantic Ridge[J]. Acta Oceanologica Sinica, 2017, 36(2): 22-34. doi: 10.1007/s13131-016-0961-3

Mineralogical characteristics of polymetallic sulfides from the Deyin-1 hydrothermal field near 15°S, southern Mid-Atlantic Ridge

doi: 10.1007/s13131-016-0961-3
  • Received Date: 2016-04-20
  • Rev Recd Date: 2016-06-15
  • A seafloor hydrothermal field, named Deyin-1 later, near 15°S southern Mid-Atlantic Ridge (SMAR) was newly found during the 22nd cruise carried out by the China Ocean Mineral Resources Research & Development Association (COMRA). Sulfide samples were collected at three stations from the hydrothermal field during the 26th cruise in 2012. In this paper, mineralogical characteristics of the sulfides were analyzed with optical microscope, X-ray diffractometer, scanning electron microscope and electron microprobe to study the crystallization sequence of minerals and the process of hydrothermal mineralization. According to the difference of the ore-forming metal elements, the sulfide samples can be divided into three types:(1) the Fe-rich sulfide, which contains mainly pyrite and chalcopyrite; (2) the Fe-Cu-rich sulfide consisting predominantly of pyrite, chalcopyrite and isocubanite, with lesser amount of sphalerite, marmatite and pyrrhotine; and (3) the Fe-Zn-rich sulfide dominated by pyrite, sphalerite and marmatite, with variable amounts of chalcopyrite, isocubanite, pyrrhotine, marcasite, galena and gratonite. Mineral precipitations in these sulfides are in the sequence of chalcopyrite (isocubanite and possible coarse pyrite), fine pyrite, sphalerite (marmatite), galena, gratonite and then the minerals out of the dissolution. Two morphologically distinct generations (Py-I and Py-II) of pyrite are identified in each of the samples; inclusions of marmatite tend to exist in the coarse pyrite crystals (Py-I). Sphalerite in the Fe-Zn-rich sulfide is characterized by a "chalcopyrite disease" phenomenon. Mineral paragenetic relationships and a wide range of chemical compositions suggest that the environment of hydrothermal mineralization was largely changing. By comparison, the Fe-rich sulfide was formed in a relatively stable environment with a high temperature, but the conditions for the formation of the Fe-Cu-rich sulfide were variable. The Fe-Zn-rich sulfide was precipitated during the hydrothermal venting at relatively low temperature.
  • loading
  • Alt J C, Lonsdale P, Haymon R, et al. 1987. Hydrothermal sulfide and oxide deposits on seamounts near 21°N, East Pacific Rise. Geological Society of America Bulletin, 98(2):157-168
    Baker E T, Chen Y J, Phipps Morgan J. 1996. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth and Planetary Science Letters, 142(1-2):137-145
    Baker E T, German C R. 2004. On the global distribution of hydrothermal vent fields. In:German C R, Lin J, Parson L M, et al, eds. Mid-ocean Ridges:Hydrothermal Interactions Between the Lithosphere and Oceans. Washington, DC:Wiley, 148:245-266
    Banks D A, Boyce A J, Samson I M. 2002. Constraints on the origins of fluids forming Irish Zn-Pb-Ba deposits:evidence from the composition of fluid inclusions. Economic Geology, 97(3):471-480
    Barnes H L. 1975. 13-Zoning of ore deposits:types and causes. Transactions of the Royal Society of Edinburgh, 69(13):295-311
    Barton Jr P B, Bethke P M. 1987. Chalcopyrite disease in sphalerite:pathology and epidemiology. American Mineralogist, 72(5-6):451-467
    Beaulieu S E. 2010. InterRidge global database of active submarine hydrothermal vent fields, version 2.1. Southampton, UK:Natl Oceanogr Cent. http://www.interridge.org/IRvents
    Bendel V, Fouquet Y, Auzende J M, et al. 1993. The White Lady hydrothermal field, North Fiji back-arc basin, southwest Pacific. Economic Geology, 88(8):2237-2245
    Bideaux R A, Bladh K W, Nichols M C. 1990. Handbook of Mineralogy. Tucson:Mineral Data Publishing
    Bortnikov N S, Genkin A D, Dobrovol'Skaya M G, et al. 1991. The nature of chalcopyrite inclusions in sphalerite; exsolution, coprecipitation, or "disease". Economic Geology, 86(5):1070-1082
    Bortnikov N S, Simonov V A, Fouquet Y, et al. 2010. Phase separation of fluid in the Ashadze deep-sea modern submarine hydrothermal field (mid-atlantic ridge, 12°58s'N):results of fluid inclusion study and direct observations. Doklady Earth Sciences, 435(1):1446-1449
    Boschen R E, Rowden A A, Clark M R, et al. 2013. Mining of deep-sea seafloor massive sulfides:a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean & Coastal Management, 84:54-67
    Cherkashov G, Bel'tenev V, Ivanov V, et al. 2008. Two new hydrothermal fields at the Mid-Atlantic Ridge. Marine Georesources & Geotechnology, 26(4):308-316
    Chiba H, Uchiyama N, Teagle D A H. 1998. Stable isotope study of anhydrite and sulfide minerals at the TAG hydrothermal mound, Mid-Atlantic Ridge 26°N. In:Proceedings of the Ocean Drilling Program, Scientific Results, 158:85-90
    Cook N J, Klemd R, Okrusch M. 1994. Sulphide mineralogy, metamorphism and deformation in the Matchless massive sulphide deposit, Namibia. Mineralium Deposita, 29(1):1-15
    Dekov V. 2006. Native nickel in the TAG hydrothermal field sediments (Mid-Atlantic Ridge, 26°N):space trotter, guest from mantle, or a widespread mineral, connected with serpentinization. Journal of Geophysical Research:Solid Earth (1978-2012), 111(B5):doi: 10.1029/2005JB003955[DOI:10.1029/2005JB003955]
    deMartin B J, Sohn R A, Canales J P, et al. 2007. Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology, 35(8):711-714
    Desbruyères D, Almeida A, Biscoito M, et al. 2000. A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge:dispersal vs. environmental controls. Hydrobiologia, 440(1-3):201-216
    Devey C W, Lackschewitz K S, Baker E. 2005. Hydrothermal and volcanic activity found on the Southern Mid-Atlantic Ridge. EOS, Transactions American Geophysical Union, 86(22):209-212
    Edmond J M, Measures C, McDuff R E, et al. 1979. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean:the Galapagos data. Earth and Planetary Science Letters, 46(1):1-18
    Eldridge C S, Barton Jr P B, Ohmoto H. 1983. Mineral textures and their bearing on formation of the Kuroko orebodies. Econ Geol Monogr, 5:241-281
    Eldridge C S, Bourcier W L, Ohmoto H, et al. 1988. Hydrothermal inoculation and incubation of the chalcopyrite disease in sphalerite. Economic Geology, 83(5):978-989
    Fouquet Y. 1997. Where are the large hydrothermal sulphide deposits in the ocean. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 355(1723):427-441
    Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the mid-atlantic ridge and ultramafic-hosted mineralization:a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In:Rona R A, Devey C W, Dyment J, et al., eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington:American Geophysical Union, 321-367
    Fouquet Y, Wafik A, Cambon P, et al. 1993. Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23 degrees N). Economic Geology, 88(8):2018-2036
    German C R, Bennett S A, Connelly D P, et al. 2008. Hydrothermal activity on the southern Mid-Atlantic Ridge:tectonically- and volcanically-controlled venting at 4°-5°S. Earth and Planetary Science Letters, 273(3-4):332-344
    German C R, Connelly D P, Evans A J, et al. 2002. Hydrothermal activity on the southern Mid-Atlantic Ridge. In:AGU Fall Meeting Abstracts. Washington:American Geophysical Union, 1:1361
    German C R, Livermore R A, Baker E T, et al. 2000. Hydrothermal plumes above the East Scotia Ridge:an isolated high-latitude back-arc spreading centre. Earth and Planetary Science Letters, 184(1):241-250
    German C R, Parson L M, Murton B J, et al. 2005. Hydrothermal activity on the southern mid-atlantic ridge:tectonically-and volcanically-hosted high temperature venting at 2-7 Degrees S. In:AGU Fall Meeting Abstracts. Washington:American Geophysical Union, 1:04
    Graham U M, Bluth G J, Ohmoto H. 1988. Sulfide-sulfate chimneys on the East Pacific Rise, 11 degrees and 13 degrees N latitudes:Part I. Mineralogy and paragenesis. The Canadian Mineralogist, 26(3):487-504
    Grenne T, Vokes F M. 1990. Sea-floor sulfides at the Hoydal volcanogenic deposit, central Norwegian Caledonides. Economic Geology, 85(2):344-359
    Haase K M, Koschinsky A, Petersen S, et al. 2009. Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge:the Lilliput field at 9°33'S. Marine Geology, 266(1-4):52-64
    Haase K M, Petersen S, Koschinsky A, et al. 2007. Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 8(11):Q11002
    Haase K M, Scientific Party M. 2005. Hydrothermal activity and volcanism on the southern Mid-Atlantic Ridge. In:AGU Fall Meeting Abstracts. Washington:American Geophysical Union, 1:05
    Hannington M D, de Ronde C E J, Petersen S. 2005. Sea-floor tectonics and submarine hydrothermal systems. In:Economic Geology 100th Anniversary Volume. Littleton, Colo:Society of Economic Geology
    Hannington M D, Petersen S, Herzig P M, et al. 2004. A global database of seafloor hydrothermal systems, including a digital database of geochemical analyses of seafloor polymetallic sulfides. Gelogical Survey of Canada, Open File, 4598
    Haymon R M, Kastner M. 1981. Hot spring deposits on the East Pacific Rise at 21°N:preliminary description of mineralogy and genesis. Earth and Planetary Science Letters, 53(3):363-381
    Herzig P M, Hannington M D. 1995. Polymetallic massive sulfides at the modern seafloor a review. Ore Geology Reviews, 10(2):95-115
    Herzig P M, Petersen S, Hannington M D. 1998. Geochemistry and sulfur-isotopic composition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. Proceedings of the Ocean Drilling Program. Scientific Results, 158:47-70
    Humphris S E, Tivey M K. 2000. A synthesis of geological and geochemical investigations of the TAG hydrothermal field:insights into fluid-flow and mixing processes in a hydrothermal system. Geological Society of America Special Papers, 349:213-236
    Huston D L, Sie S H, Suter G F, et al. 1993. The compositon of pyrite in volcanogenic massive sulfide deposits as determined with the proton microprobe. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 75(1-4):531-534
    Huston D L, Sie S H, Suter G F, et al. 1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90(5):1167-1196
    Janecky D R, Seyfried Jr W E. 1984. Formation of massive sulfide deposits on oceanic ridge crests:incremental reaction models for mixing between hydrothermal solutions and seawater. Geochimica et Cosmochimica Acta, 48(12):2723-2738
    Kelley D S, Karson J A, Blackman D K, et al. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 412(6843):145-149
    Koschinsky A, Billings A, Devey C, et al. 2006a. Discovery of new hydrothermal vents on the southern Mid-Atlantic Ridge (4 S-10 S) during cruise M68/1. Inter-Ridge News, 15:9-15
    Koschinsky A, Devey C, Garbe-Schönberg D, et al. 2006b. Hydrothermal Exploration of the Mid-Atlantic Ridge, 5-10° S, using the AUV ABE and the ROV Quest a brief overview of RV Meteor Cruise M68/1. In:AGU Fall Meeting Abstracts. Washington:American Geophysical Union, 1:05
    Koschinsky A, Garbe-Schönberg D, Sander S, et al. 2008. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge. Geology, 36(8):615-618
    Koski R A, Clague D A, Oudin E. 1984. Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge. Geological Society of America Bulletin, 95(8):930-945
    Lalou C, Reyss J L, Brichet E, et al. 1995. Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26°N. Journal of Geophysical Research:Solid Earth (1978-2012), 100(B9):17855-17862
    Lepetit P, Bente K, Doering T, et al. 2003. Crystal chemistry of Fe-containing sphalerites. Physics and Chemistry of Minerals, 30(4):185-191
    Li Jiuling, Wang Su. 1990. Investigation of a new exsolved Cu-Fe-S phase in "abnormal sphalerite". Acta Geologica Sinica (in Chinese), 64(3):206-214
    McCaig A M, Delacour A, Fallick A E, et al. 2010. Detachment fault control on hydrothermal circulation systems:interpreting the subsurface beneath the TAG hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic. In:Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington:American Geophysical Union, 207-239
    Melchert B, Devey C W, German C R, et al. 2008. First evidence for high-temperature off-axis venting of deep crustal/mantle heat:the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275(1-2):61-69
    Melekestseva I Y, Kotlyarov V A, Khvorov P V, et al. 2010. Noble-metal mineralization in the Semenov-2 hydrothermal field (13°31'N), mid-atlantic ridge. Geology of Ore Deposits, 52(8):800-810
    Mills R A, Teagle D A H, Tivey M K. 1998. Fluid mixing and anhydrite precipitation within the TAG mound. Proceedings of the Ocean Drilling Program. Scientific Results, 158:119-127
    Monroe J, Wicander R, Hazlett R. 2006. Physical Geology:Exploring the Earth. 6th ed. Belmont, CA:Cengage Learning, 720
    Mozgova N N, Borodaev Y S, Gablina I F, et al. 2002. Isocubanite from sulfide ores of the rainbow hydrothermal field (Mid-Atlantic Ridge, 36°14'N). Zapiski Vserossijskogo Mineralogičeskogo Obŝestva, 131(5):61-70
    Münch U, Blum N, Halbach P. 1999. Mineralogical and geochemical features of sulfide chimneys from the MESO zone, Central Indian Ridge. Chemical Geology, 155(1-2):29-44
    Nayak B, Halbach P, Pracejus B, et al. 2014. Massive sulfides of Mount Jourdanne along the super-slow spreading Southwest Indian Ridge and their genesis. Ore Geology Reviews, 63:115-128
    Paul Jr B B. 1978. Some ore textures involving sphalerite from the Furutobe mine, Akita Prefecture, Japan. Shigen-Chishitsu, 28(150):293-300
    Perner M, Seifert R, Weber S, et al. 2007. Microbial CO2 fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9°S). Environmental Microbiology, 9(5):1186-1201
    Petersen S, Kuhn K, Kuhn T, et al. 2009. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45' N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos, 112(1-2):40-56
    Picot P, Fevrier M. 1979. Etude Mineralogique D'échantillons du Golfe de Californie (Campagne CYAMEX). Paris:Bureau de Recherches Géologiques et Minières
    Pring A, Tarantino S C, Tenailleau C, et al. 2008. The crystal chemistry of Fe-bearing sphalerites:an infrared spectroscopic study. American Mineralogist, 93(4):591-597
    Ramdohr P. 1955. Die Erzmineralien und Ihre Verwachsungen. Berlin:Akademie-Verlag
    Reed C. 2006. Marine science:boiling points. Nature, 439(7079):905-907
    Rickard D, Knott R, Duckworth R, et al. 1994. Organ pipes, beehive diffusers and chimneys at the Broken Spur hydrothermal sulphide deposits, 29°N MAR. Mineralogical Magazine, 58A(2):774-775
    Rona P A. 1973. New evidence for seabed resources from global tectonics. Ocean Management, 1:145-159
    Rona P A. 1980. TAG hydrothermal field:mid-Atlantic ridge crest at latitude 26 N. Journal of the Geological Society, 137(4):385-402
    Rona P A, Klinkhammer G, Nelsen T A, et al. 1986. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature, 321(6065):33-37
    Schaefer M O, Gutzmer J, Beukes N J, et al. 2004. Mineral chemistry of sphalerite and galena from Pb-Zn mineralization hosted by the Transvaal Supergroup in Griqualand West, South Africa. South African Journal of Geology, 107(3):341-354
    Scott S D. 1987. Seafloor polymetallic sulfides:scientific curiosities or mines of the future? In:Teleki P G, Dobson M R, Moore J R, et al., eds. Marine Minerals. Netherlands:Springer, 277-300
    Scott S D, Kissin S A. 1973. Sphalerite composition in the Zn-Fe-S system below 300 degrees C. Economic Geology, 68(4):475-479
    Shao Mingjuan, Yang Yaomin, Su Xin, et al. 2014. Study on chimney mineralogy from the 26°S hydrothermal field in South Mid-Atlantic Ridge. China Mining Magazine (in Chinese), 23(5):77-81
    Sohn R A. 2013. Reaction-driven cracking in the TAG deep-sea hydrothermal field:implications for serpentinization and carbonation of peridotite. In:AGU Fall Meeting Abstracts. Washington:American Geophysical Union, 1:07
    Stichel T, Pahnke K, Goldstein S L, et al. 2012. The geochemistry of seawater neodymium isotopes in the TAG hydrothermal plume at the Mid Atlantic Ridge. In:AGU Fall Meeting Abstracts. Washington:American Geophysical Union, 1:1690
    Tao Chunhui, Deng Xianming, Wu Guanghai, et al. 2012. Transient electromagnetic and electric self-potential survey in the TAG hydrothermal field in MAR. In:AGU Fall Meeting Abstracts. Washington:American Geophysical Union, 1:1763
    Tao Chunhui, Li Haiming, Yang Yaomin, et al. 2010. Two hydrothermal active vents were found at 13.2°S and 14°S of South Mid-Atlantic Ridge. In:AGU Fall Meeting Abstracts. Washington:American Geophysical Union, 1:07
    Tao Chunhui, Li Haiming, Yang Yaomin, et al. 2011. Two hydrothermal fields found on the Southern Mid-Atlantic Ridge. Science China Earth Sciences, 54(9):1302-1303
    Tivey M K, Humphris S E, Thompson G, et al. 1995. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. Journal of Geophysical Research, 100(B7):12527-12555
    Tivey M K, Stakes D S, Cook T L, et al. 1999. A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge:results of a petrologic and geochemical study. Journal of Geophysical Research:Solid Earth (1978-2012), 104(B10):22859-22883
    Yoerger D R, Bradley A M, Jakuba M V, et al. 2007. Mid-ocean Ridge Exploration with an Autonomous Underwater Vehicle. Oceanography, 20(4):52-61
    Zaw K, Huston D L, Large R R. 1999. A chemical model for the Devonian remobilization process in the Cambrian volcanic-hosted massive sulfide Rosebery deposit, western Tasmania. Economic Geology, 94(4):529-546
    Zeng Zhigang, Qin Yunshan, Zhai Shikui. 2001. He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal sulfides from the TAG hydrothermal field Mid-Atlantic Ridge. Science in China Series D:Earth Sciences, 44(3):221-228
    Zheng Jianbin, Cao Zhimin, An Wei. 2007. Mineral components, texture, and forming conditions of hydrothermal chimney on the east pacific rise at 9°-10°N. Journal of China University of Geosciences, 18(2):128-134
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1557) PDF downloads(535) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return