BAO Ying, LI Yangchun. Simulations of dissolved oxygen concentration in CMIP5 Earth system models[J]. Acta Oceanologica Sinica, 2016, 35(12): 28-37. doi: 10.1007/s13131-016-0959-x
Citation: BAO Ying, LI Yangchun. Simulations of dissolved oxygen concentration in CMIP5 Earth system models[J]. Acta Oceanologica Sinica, 2016, 35(12): 28-37. doi: 10.1007/s13131-016-0959-x

Simulations of dissolved oxygen concentration in CMIP5 Earth system models

doi: 10.1007/s13131-016-0959-x
  • Received Date: 2015-10-19
  • Rev Recd Date: 2016-06-13
  • The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models (ESMs) from the historical emission driven experiment of CMIP5 (Phase 5 of the Climate Model Inter-comparison Project) are quantitatively evaluated by comparing the simulated oxygen to the WOA09 observation based on common statistical metrics. At the sea surface, distribution of dissolved oxygen is well simulated by all nine ESMs due to well-simulated sea surface temperature (SST), with both globally-averaged error and root mean square error (RMSE) close to zero, and both correlation coefficients and normalized standard deviation close to 1. However, the model performance differs from each other at the intermediate depth and deep ocean where important water masses exist. At the depth of 500 to 1 000 m where the oxygen minimum zones (OMZs) exist, all ESMs show a maximum of globally-averaged error and RMSE, and a minimum of the spatial correlation coefficient. In the ocean interior, the reason for model biases is complicated, and both the meridional overturning circulation (MOC) and the particulate organic carbon flux contribute to the biases of dissolved oxygen distribution. Analysis results show the physical bias contributes more. Simulation bias of important water masses such as North Atlantic Deep Water (NADW), Antarctic Bottom Water (AABW) and North Pacific Intermediate Water (NPIW) indicated by distributions of MOCs greatly affects the distributions of oxygen in north Atlantic, Southern Ocean and north Pacific, respectively. Although the model simulations of oxygen differ greatly from each other in the ocean interior, the multi-model mean shows a better agreement with the observation.
  • loading
  • Assmann K M, Bentsen M, Segschneider J, et al. 2010. An isopycnic ocean carbon cycle model. Geoscientific Model Development, 3(1):143-167
    Aumont O, Bopp L. 2006. Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycles, 20(2):GB2017
    Bao Ying, Qiao Fangli, Song Zhenya. 2012. Historical simulation and twenty-first century prediction of oceanic CO2 sink and pH change. Acta Oceanologica Sinica, 31(5):87-97
    Bentsen M, Bethke I, Debernard J B, et al. 2012. The Norwegian Earth System Model, NorESM1-M-Part 1:description and basic eval-uation. Geoscientific Model Development, 5(3):2843-2931
    Cabré A, Marinov I, Bernardello R, et al. 2015. Oxygen minimum zones in the tropical Pacific across CMIP5 models:mean state differences and climate change trends. Biogeosciences, 12(18):5429-5454, doi: 10.5194/bg-12-5429-2015
    Cocco V, Joos F, Steinacher M, et al. 2013. Oxygen and indicators of stress for marine life in multi-model global warming projec-tions. Biogeosciences, 10(3):1849-1868, doi: 10.5194/bg-10-1849-2013
    Collins W J, Bellouin N, Doutriaux-Boucher M, et al. 2011. Develop-ment and evaluation of an Earth-system model-HadGEM2. Geoscientific Model Development, 4(4):1051-1075, doi: 10.5194/gmd-4-1051-2011
    Dufresne J L, Foujols M A, Denvil S, et al. 2013. Climate change pro-jections using the IPSL-CM5 Earth System Model:from CMIP3 to CMIP5. Climate Dynamics, 40(9-10):2123-2165, doi: 10.1007/s00382-012-1636-1
    Dunne J P, John J G, Adcroft A J, et al. 2012. GFDL's ESM2 global coupled climate-carbon earth system models. Part I:physical formulation and baseline simulation characteristics. Journal of Climate, 25(19):6646-6665, doi: 10.1175/jcli-d-11-00560.1
    Dunne J P, John J G, Shevliakova E, et al. 2013. GFDL's ESM2 global coupled climate-carbon earth system models:Part Ⅱ:carbon system formulation and baseline simulation characteristics. Journal of Climate, 26(7):2247-2267, doi: 10.1175/jcli-d-12-00150.1
    Emerson S, Watanabe Y W, Ono T, et al. 2004. Temporal trends in ap-parent oxygen utilization in the upper pycnocline of the North Pacific:1980-2000. Journal of Oceanography, 60(1):139-147
    Garcia H E, Locarnini R A, Boyer T P, et al. 2010. World Ocean Atlas 2009 Volume 3:dissolved oxygen, apparent oxygen utilization, and oxygen saturation. In:Levitus S, ed. NOAA Atlas NESDIS 70. Washington D C, USA:U S Government Printing Office
    Gent P R, Danabasoglu G, Donner L J, et al. 2011. The community cli-mate system model version 4. Journal of Climate, 24(19):4973-4991, doi: 10.1175/2011jcli4083.1
    Halloran P R, Bell T G, Totterdell I J. 2010. Can we trust empirical marine DMS parameterisations within projections of future cli-mate?. Biogeosciences, 7(5):1645-1656
    Helm K P, Bindoff N L, Church J A. 2011. Observed decreases in oxy-gen content of the global ocean. Geophysical Research Letters, 38(23):L23602
    Ilyina T, Six K D, Segschneider J, et al. 2013. Global ocean biogeo-chemistry model HAMOCC:model architecture and perform-ance as component of the MPI-Earth system Model in different CMIP5 experimental realizations. Journal of Advance in Model-in?映??????牓楹慳湴?剭???漵瀨瀲?????攭栳氱攵測????攺琱‰愮氱?′代????′卍歓椰氰氰?愷猸猼敢獲猾浊敵湮瑧?潬晡?瑳栠牊攠效?攠慆物瑳档?獥祲猠瑎攬洠?浡潡摫攠汈猬?睥楴琠桡?挮漠洲洰漱渳?洠慃牨楡湲敡?扴楥潲杩敳潴捩档敳洠楯獦琠牴票???汣楥浡慮琠敳??祵湬慡浴楩捯獮???の?????????????????扮牳?卩牴潵歴潥猠穏???????牤祥摬攠渨????????と????佥扡獮攠牣癯業湰杯?瑥桮整??瑦氠慴湨瑥椠捍??攭牅楡摲楴潨渠慳汹?佴癥敭爠瑭畯牤渭楥湬朮??楯牵捲畮污慬琠楯潦渠?祤楶敡汮摣獥?愠?摮攠捍慯摤敥?潩普?椠湅敡癲楴瑨愠打汹敳?獥畭爬瀠爵椨猲攩猺?′匲挭椴攴渶挼敢? ̄???????ㄠ???水??????扩牮?卥瑲爠慁洬洠慇?????漠桎渮猠漲渰??????卥灡牮椠湤瑥慯汸汹????整瑩?慮氠??㈠ち?????硩灮慧渠摷楯湲杬?漮砠祁杮敮湵?浬椠湒楥浶畩浥?稠潯湦攠獍?楲湩?瑥栠敓?瑩牥潮灣楥挬愠氲?漱挩攺愱渹猹?′匲挹椼敢湲挾敋????ぴ???????????????戠牋?呡慴祩汷潡牬?????′?愱氲愮樠楓?噮???慩湶歩楴湹?卡??敬瑹?慩汳???????????偧???慡瑬愠?剡敲晩敮牥攠湢捩敯?卥祯湣?瑥慭硩???删卭??慥湬摳?挠潇湬瑯牢潡汬氠敂摩?癧潥捯慣扨略汭慩牣楡敬猠??偣牬潥杳爬愠洲?昨漲爩??求椲洰愲琹攬??潯摩攺氱‰?椱愰朲渹漯猲椰猱?慇湂搰‰?渰琷攲爼换潲派灍慣牃楲獥潡湲??偊????????桵琠瑚灵???据洬椠灈?灯捤洠摒椠?氬氠湥汴?条潬瘮?挲洰椱瀳??摄潹据獡?捩浣楳瀠?彦搠慴瑨慥张牉敮昭敤物敡湮挭敏彣獥祡湮琠慯硸?灧摥普嬠?ど???ふ??ぺ???び?ㄠ??????嵳?戠物?吠慏祣汥潡牮??????卨瑹漬甠昱昱攲爭?刱″??‵?攳攷格汢?????????㈠???湄?潮癥敹爠癓椠敃眬?潌晩????偹??愮渠搲‰琰栴攮?敕硰灰敥牲椠浯散湥瑡?搠敥獣楯杳湹???畭氠汤敹琭楮湡?潩晣?琠桡敮??浩敲牯楮挠慣湹??敩瑮敧漠物潮氠潡朠楧捬?慢污?匠潴捨楲敥瑥礭????????????????扬爮?呇獬畯橢楡湬漠?????楯牣慨扥慭物慣????乹慣歬慥湳漬????攴琩?慇求?‰有???? ̄卍楯浲畲汩慳瑯楮渠杊?灍爬攠獃敯湤瑩?捰汯楴?洠慌琠敁?漠晓?瑩桴敨?杓氠潌戬愠汥?漠捡敬愮渠?椹挹改?猠祔獨瑥攠浯?畹獧楥湮朠?瑩桮攭??敵瑭攠潺牯潮汥漠杩楮挠慴汨?删敁獲敡慢物捡桮??湥獡琠楤瑵畲瑩敮??漱洹洹电渮椠瑄祥?佰挠敓慥湡??潥摳敥污???删???佴???獔楯浰?畣污慬琠楓潴湵?捩桥慳爠慩据琠敏牣楥獡瑮楯捧獲?慰湨摹?瘠愴父椨愸戭椹氩椺琱礹‰椳渭?琹栳攱?偢慲挾楎晡楪捪?獲攠捒琠潇爬???潮甠牘測愠汌?潵晡?佣捨敩愠湆漬朠牥慴瀠桡祬????????????????扦爠?坩桲楣瑵湬敡祴???????牥數攭汰慯湲摴??????剣潴扩敯牮琬?????はぬ???倠敯牲獧楡獮瑩散渠瑭污祴?摥敲挬氠楡湮楤渠杤?潳硳祯?杶敥湤?汯數癹攭汧獥?椠湩?琠桴敨?椠湯瑣敥牡楮漺牲?睳慵瑬整牳猠?潲景?琠桐敨?敳慥猠瑡攠牯湦?獴畨扥愠牏捣瑥楡据?偃慡捲楢景楮挭??偣牬潥朠牍敯獤獥?椠湉?佴捥敲慣湯潭杰牡慲灩桳祯???????????????P-2). Global Biogeochemical Cycles, 21(3):GB3007
    Oschlies A, Schulz K G, Riebesell U, et al. 2008. Simulated 21st cen-tury's increase in oceanic suboxia by CO2-enhanced biotic car-bon export. Global Biogeochemical Cycles, 22(4):GB4008
    Qiao Fangli, Song Zhenya, Bao Ying, et al. 2013. Development and evaluation of an earth system model with surface gravity waves. Journal of Geophysical Research (Oceans), 118(9):4514-4524, doi: 10.1002/jgrc.20327
    Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixing in the upper ocean:distribution and application to a global ocean circulation model. Geophysical Research Letters, 31(11):doi: 10.1029/2004GL019824
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1055) PDF downloads(432) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return