YE Liangtao, YU Ge, LIAO Mengna, LI Yongfei. Dynamic simulations of the late MIS 3 transgressions in the East China Sea and southern Yellow Sea, China[J]. Acta Oceanologica Sinica, 2016, 35(10): 48-55. doi: 10.1007/s13131-016-0919-5
Citation: YE Liangtao, YU Ge, LIAO Mengna, LI Yongfei. Dynamic simulations of the late MIS 3 transgressions in the East China Sea and southern Yellow Sea, China[J]. Acta Oceanologica Sinica, 2016, 35(10): 48-55. doi: 10.1007/s13131-016-0919-5

Dynamic simulations of the late MIS 3 transgressions in the East China Sea and southern Yellow Sea, China

doi: 10.1007/s13131-016-0919-5
  • Received Date: 2015-12-20
  • Rev Recd Date: 2016-05-05
  • Abundant evidences of higher sea levels from Jiangsu and Fujian coasts have proved a marine transgression event during 30-40 ka BP, suggesting that there was a stage with high sea level and a warm climate when ice sheets shrank in the Northern Hemisphere. The duration of 30-40 ka BP spanned a period in the late Marine Isotope Stage 3 (MIS 3) and was in nature an interstadial epoch during the Last Glacial period of the Quaternary. Different from the glacial period with a cold climate, this marine transgression considered as a penultimate higher sea level during the Quaternary remains a puzzle that why the evidence is contrary to the Quaternary glacial theory. It is important to understand sea level rise for these areas sensitively responding to the global changes in the future. To recognize the key issues on sea level changes, the eustatic sea level (HS) was defined as the glaciation-climate-forced sea levels, and the relative sea level change (HR) was defined as that a sea level record was preserved in sediment that experienced multiple secondary actions of land and sea effects. On the basis as defined above, we constructed multi-level models of climate-driven glacio-eustatic changes and land-sea systems. By integrating data sets from eight borehole cores and prescribing the boundary conditions, we simulated the changes of HS and HR in the East China Sea and southern Yellow Sea areas in the late MIS 3. The marine transgression strata from the borehole core data was identified at ca. 30 m below present sea level as a result of the collective influence of ice melting water, neotectonic subsidence, sediment compaction and terrestrial sediment filling since ca. 35 ka ago, whereas the simulated relative sea-levels turned out to be-26.3--29.9 m a.s.l. The small error involved in the simulation results of ±(2.5-4.5) m demonstrated the credibility of the results. Our results indicated that sea level change in the late MIS 3 was dominated by glacial effects, in which the eustatic sea-level was between-19.2--22.1 m a.s.l. The study sheds light on the nature of sea-level changes along the east coast of China in the late MIS 3 and contributes to understanding the characteristics of marine transgression under the effects of multiple complex land-sea interactions.
  • loading
  • Bard E, Hamelin B, Fairarks R G. 1990. U-Th ages obtained by mass spectrometry in corals from Barbados:sea level during the past 130, 000 years. Nature, 346(6283):456-458
    Bureau of Geology and Mineral Resources of Jiangsu. 1984. Regional Geological Log of Jiangsu and Shanghai (in Chinese). Beijing:Geology Press, 50-113
    Cann J H, Belperio A P, Murray-Wallace C V. 2000. Late Quaternary paleo-sea levels and paleoenvironments inferred from fo-raminifera, northern Spencer Gulf, South Australia. Journal of Foraminiferal Research, 30(1):29-53
    Chai Ligen. 1988. An introduction to the tectonic system of the East China Sea. Oil and Gas Geology (in Chinese), 9(1):100-108
    Chappell J, Omura A, Esat T, et al. 1996. Reconciliation of late Qua-ternary sea levels derived from coral terraces at Huon Penin-sula with deep sea oxygen isotope records. Earth and Planetary Science Letters, 141(1):227-236
    Chappell J, Shackleton N J. 1986. Oxygen isotopes and sea level. Nature, 324(6093):137-140
    Chen Wanli, Gu Hongqun, Zhang Daozheng. 1998a. Study on the Quaternary marine transgression and coastline change. Ji-angsu Geology (in Chinese), 22(Supp):45-50
    Chen Wenrui, Lan Dongzhao, Chen Chenghui. 1998b. Late Quatern-ary diatom and sea level changes in estuarine plain of the Ji-ulong River. Acta Oceanologica Sinica, 17(4):509-518
    Clapperton C M, Sugden D E, Kaufman D S, et al. 1995. The last glaci-ation in central Magellan Strait, southernmost Chile. Quatern-ary Research, 44(2):133-148
    Clark P U, Clague J J, Curry B B, et al. 1993. Initiation and develop-ment of the Laurentide and Cordilleran ice sheets following the last interglaciation. Quaternary Science Reviews, 12(2):79-114
    Fuji N, Horowitz A. 1989. Brunhes epoch paleoclimates of Japan and Israel. Palaeogeography, Palaeoclimatology, Palaeoecology, 72:79-88
    Gao Shu. 2013. Holocene shelf-coastal sedimentary systems associ-ated with the Changjiang River:An overview. Acta Oceanolo-gica Sinica, 32(12):4-12
    Gao Zhiqiang, Liu Xiangyang, Ning Jicai, et al. 2014. Analysis on changes in coastline and reclamation area and its causes based on 30-year satellite data in China. Transactions of the Chinese Society of Agricultural Engineering (in Chinese), 30(12):140-147
    He Yaotang. 2011. The sedimentary sporopollen and microbody pale-ontology and its paleoenvironment significance of the Late Quaternary period basin in Quanzhou city, Fujian province. Geology of Fujian (in Chinese), 30(3):224-232
    Hu Huimin, Huang Liren, Yang Guohua. 1992. Recent crustal vertical movement in the Chang-Jiang River delta and its adjacent area. Acta Geographica Sinica (in Chinese), 47(1):22-30
    Huang Zhenguo, Li Pingri, Zhang Zhongying, et al. 1986. Sea-level Changes in South China since the Late Pleistocene Epoch (in Chinese). Beijing:China Ocean Press, 178-194
    Huang Baoqi, Yang Wenyu. 2006. Variations of upper water structure in MIS 3 from the Northern South China Sea. Quaternary Sci-ences (in Chinese), 26(3):436-441
    Huang Liren, Yang Guohua, Hu Huimin. 1990. Studies on the isostat-ic datum of coast sea level changes of China. In:Shi Yafeng, Wang Mingxing, Zhang Piyuan, et al., eds. A Review of Climatic and Sea Level Changes of China (1) (in Chinese). Beijing:State Seismic Bureau, 54-55
    Jiang Minggen. 1999. Application of consolidation study in sediment-ary environment analysis. Coal Geology and Exploration (in Chinese), 27(1):1-3
    Lambeck K, Bard E. 2000. Sea-level change along the French Mediter-ranean coast for the past 30, 000 years. Earth and Planetary Sci-ence Letters, 175(3-4):203-222
    Lambeck K, Chappell J. 2001. Sea level change through the last gla-cial cycle. Science, 292(5517):679-686
    Li Yongfei. 2014. Stratigraphy and the sedimentary environments in Fujian Coast since the Late Quaternary (in Chinese)[disserta-tion]. Nanjing:Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 30-45
    Li Yanyan, Wang Jian, Cao Guangjie. 2012. Sedimentary evolution characteristics of the Yangtze River at Yangzhong section dur-ing the last 50, 000 years. Journal of Nanjing Normal University (Natural Science Edition) (in Chinese), 35(2):108-112
    Lowe J J, Walker M J C. 1997. Reconstructing Quaternary Environ-ments. 2nd ed. Harlow:Addison Wesley Longman Press, 17-86
    Martinson D G, Pisias N G, Hays J D, et al. 1987. Age dating and the orbital theory of the ice ages:Development of a high-resolution 0 to 300, 000-year chronostratigraphy. Quaternary Research, 27(1):1-29
    McManus J F, Oppo D W, Cullen J L. 1999. A 0. 5-million-year record of millennial-scale climate variability in the North Atlantic. Sci-ence, 283(5404):971-975
    Peltier W R. 1994. Ice age paleotopography. Science, 265(5169):195-201
    Ren Meie. 2006. Sediment discharge of the Yellow River, China:past, present and future-a synthesis. Advances in Earth Science (in Chinese), 21(6):551-563
    Shackleton N J. 1987. Oxygen isotopes, ice volume and sea level. Qua-ternary Science Reviews, 6(3-4):183-190
    Shi Kai. 2010. Evolution of Paleoenvironment since Late Pleistocene of SC1 core in Chenghu Lake, Jiangsu Province. Geoscience (in Chinese), 24(2):214-220
    Shi Yafeng, Yao Tandong. 2002. MIS-3b (54~44 ka BP) cold period and glacial advance in middle and low latitudes. Journal of Gla-ciology and Geocryology (in Chinese), 24(1):1-9
    Shi Yafeng, Yu Ge, Liu Xiaodong, et al. 2001. Reconstruction of the 30-40 ka BP enhanced Indian monsoon climate based on geo-logical records from the Tibetan Plateau. Palaeogeography, Pa-laeoclimatology, Palaeoecology, 169(1-2):69-83
    Skene K I, Piper D J W, Aksu A E, et al. 1998. Evaluation of the global oxygen isotope curve as a proxy for Quaternary sea level by modeling of delta progradation. Journal of Sedimentary Re-search, 68(6):1077-1092
    Stumpf A J, Broster B E, Levson V M. 2000. Multiphase flow of the Late Wisconsinan Cordilleran ice sheet in western Canada. Geological Society of America Bulletin, 112(12):1850-1663
    Sun Xiangping. 2006. Offshore Regional Seas of China (in Chinese). Beijing:China Ocean Press, 1-10
    Ukkonen P, Lunkka J P, Jungner H, et al. 1999. New radiocarbon dates from Finnish mammoths indicating large ice-free areas in Fen-noscandia during the Middle Weichselian. Journal of Quatern-ary Science, 14(7):711-714
    Wang Longsheng, Hu Shouyun, Yu Ge, et al. 2015. Paleoenviron-mental reconstruction of the radial sand ridge field in the South Yellow Sea (east China) since 45 ka using the sediment magnet-ic properties and granulometry. Journal of Applied Geophysics,122:1-10
    Wang Xueyu, Ke Xiankun. 1997. Grain-size characteristics of the ex-tant tidal flat sediments along the Jiangsu coast, China. Sedi-ment Geology, 112(1-2):105-122
    Wang Qiang, Li Fenglin, Li Yude, et al. 1986. The nomenclature of the Quaternary transgression of West and North coast plains of Bo-hai Sea. Haiyang Xuebao (in Chinese), 8(1):72-82
    Wang Jintai, Wang Pingxian. 1980. Relationship between sea-level changes and climatic fluctuations in East China since Late Pleistocene. Acta Geographica Sinica (in Chinese), 35(4):299-312
    Wei Taoyuan, Chen Zhongyuan, Wei Zixin, et al. 2006. The distribu-tion of geochemical trace elements in the Quaternary sedi-ments of the Changjiang River mouth and the paleoenviron-mental implications. Quaternary Sciences (in Chinese), 26(3):397-405
    Winograd I J. 2001. The magnitude and proximate cause of ice-sheet growth since 35,000 yr B.P.. Quaternary Research, 56(3):299-307
    Xie Zhiren, Yuan Linwang, Lv Guonian. 2012. The Changes of Sea Level and Land Surface System (in Chinese). Beijing:Sciences Press, 55-63
    Yang Xianzhong, Wei Naiyi, Wang Qiang, et al. 2010. Sedimentary characteristics of an ancient river channel in Zhenjiang-Jiang-du segment of Yangtze River delta. Marine Geology and Qua-ternary Geology (in Chinese), 30(5):11-18
    Yu Ge, Gui Feng, Shi Yafeng, et al. 2007. Late marine isotope stage 3 palaeoclimate for East Asia:A data-model comparison. Palaeo-geography, Palaeoclimatology, Palaeoecology, 250(1-4):167-183
    Yu Ge, Zheng Yiqun, Ke Xiankun. 2005. 35 ka BP climate simulations in East Asia and probing the mechanisms of climate changes. Chinese Science Bulletin, 50(1):58-67
    Zeng Congsheng. 1997. Transgressions and sea level changes along the northeast coast of Fujian during the Late Quaternary. Journal of Fujian Teachers University (Natural Science) (in Chinese), 13(4):94-101
    Zhang Lu. 2008. A kinematic model and dynamic cause of Quatern-ary tectonic movement of Southeastern coastal basins in Fuji-an province (in Chinese)[dissertation]. Beijing:Institute of Geology, China Earthquake Administration, 215
    Zhang Zhenke, Xie Li, Zhang Yunfeng, et al. 2010. Sedimentary re-cords of the MIS 3 transgression event in the North Jiangsu plain, China. Quaternary Sciences (in Chinese), 30(5):883-891
    Zhen Zhiguo, Zhong Wei, Xue Jibin, et al. 2008. Progress in the stud-ies of climatic features in different areas of China during the MIS-3. Journal of Glaciology and Geocryology (in Chinese), 30(5):815-824
    Zhu Xiaodong, Ren Meie, Zhu Dakui. 1999. Changes in depositional environments in the area near the center of the North Jiangsu radial banks since the Late Pleistocene. Oceanologia et Limno-logia Sinica (in Chinese), 30(4):427-434
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (978) PDF downloads(980) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint