YILDIZ Gamze, DERE Şükran. The effects of elevated-CO2 on physiological performance of Bryopsis plumosa[J]. Acta Oceanologica Sinica, 2015, 34(4): 125-129. doi: 10.1007/s13131-015-0652-5
Citation: YILDIZ Gamze, DERE Şükran. The effects of elevated-CO2 on physiological performance of Bryopsis plumosa[J]. Acta Oceanologica Sinica, 2015, 34(4): 125-129. doi: 10.1007/s13131-015-0652-5

The effects of elevated-CO2 on physiological performance of Bryopsis plumosa

doi: 10.1007/s13131-015-0652-5
  • Received Date: 2014-02-14
  • Rev Recd Date: 2014-05-28
  • An increase in the level of atmospheric carbon dioxide (CO2) and the resultant rise in CO2 in seawater alter the inorganic carbon concentrations of seawater. This change, known as ocean acidification, causes lower pH in seawater and may affect the physiology of seaweed species. Accordingly, the main goal of the current study was to determine the physiological responses of Bryopsis plumosa to elevated-CO2. The results indicated that photosynthesis of B. plumosa was insignificantly affected to elevated-CO2, but photosynthetic pigment contents and phenolics were significantly decreased. The results obtained from the research reveal that B. plumosa may become physiologically advanced when exposed to CO2-induced ocean acidification. In particular, B. plumosa may be more able to compete with calcifying algae when it will become future predicted CO2 scenario.
  • loading
  • Beardall J, Beer S, Raven J A. 1998. Biodiversity of marine plants in an era of climate change: some predictions based on physiological performance. Botanica Marina, 41: 113-123
    Beardall J, Ihnken S, Quigg A. 2009. Gross and net primary production: closing the gap between concepts and measurements.Aquatic Microbial Ecology, 56(2-3): 113-122
    Bischof K, Hanelt D, Wiencke C. 1999. Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biology, 1(4): 435-444
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analitic Biochemistry, 72(1-2): 248-254
    Büdenbender J, Riebesell U, Form A. 2011. Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Marine Ecology Progress Series, 441: 79-87
    Caldeira K, Wickett E M. 2003. Oceanography: Anthropogenic carbon and ocean pH. Nature, 425(6956): 365
    Connan S, Delisle F, Deslandes E, et al. 2006. Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Botanica Marina, 49(1): 39-46
    Cornwall E C, Hepburn D C, Pritchard D, et al. 2012. Carbon-use strategies in macroalgae: differantial responses to lowered pH and implications for ocean acidification. Journal of Phycology, 48(1): 137-144
    Eilers P H C, Peeters J C H. 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton.Ecological Modelling, 42(3-4): 199-215
    Forsgren E, Dupont S, Jutfelt F, et al. 2013. Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecology and Evolution, 3(11): 3637-3646
    Gao K, Aruga Y, Asada K, et al. 1993. Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Marine Biology, 117(1): 129-132
    Gao Kunshan, Zheng Yangqiao. 2010. Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Global Change Biology, 16(8): 2388-2398
    Gazeau F, Quiblier C, Jansen J M, et al. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters, 34(7): doi: 10.1029/2006GL028554
    Gordillo J L F, Niell F X, Figueroa L F. 2001. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta, 213(1): 64-70
    Hall-Spencer M J, Rodolfo-Metalpa R, Martin S, et al. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature, 454(7200): 96-99
    Harley D G C, Anderson M K, Demes W K, et al. 2012. Effects of climate change on global seaweed communities. Journal of Phycology, 48(5): 1064-1078
    Inskeep P W, Bloom R P. 1985. Extinction coefficients of chlorophyll a and b in N, N-Dimethylformamide and 80% Acetone. Plant Physiology, 77(2): 483-485
    Israel A, Hophy M. 2002. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Global Change Biology, 8(9): 831-840
    Israel A, Katz S, Dubinsky Z, et al. 1999. Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta).Journal of Applied Phycology, 11(5): 447-453
    Kevekordes K, Holland D, Häubner N, et al. 2006. Inorganic carbon acquisition by eight species of Caulerpa (Caulerpacea, Chlorophyta).Phycologia, 45(4): 442-449
    Kübler E J, Raven J A. 1994. Consequences of light limitation for carbon acquisition in three rhodophytes. Marine Ecology Progress Series, 110: 203-209
    Kübler J E, Johnston A M, Raven J A. 1999. The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant, Cell and Environment, 22(10): 1303-1310
    Larsson C, Axelsson L, Ryberg H, et al. 1997. Photosynthetic carbon utilization by Enteromorpha intestinalis (Chlorophyta) from a Swedish rockpool. European Journal of Phycology, 32(1): 49-54
    Olischläger M, Bartsct I, Gotow L, et al. 2013. Effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool-scenario. Phycological Research, 61(3): 180-190
    Olischläger M, Wiencke C. 2013. Ocean acidification alleviates lowtemperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). Journal of Experimental Botany, 64(18): 5587-5597
    Orr C J, Fabry J V, Aumont O, et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059): 681-686
    Porzio L, Garrad S L, Buia M C. 2013. The effect of ocean acidification on early algal colonization stages at natural CO2 vents. Marine Biology, 160(8): 2247-2259
    Porzio L, Cristina B M, Hall-Spencer J M. 2011. Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology, 400(1-2): 278-287
    Provasoli L. 1968. Media and prospects for the cultivation of marine algae. In: Watanable A, Hattori A, eds. Cultures and Collections of Algae. Hakone: Japanese Society Plant Physiology, 63-75
    Raven J A. 1991. Responses of aquatic photosynthetic organisms to increased solar UVB. J Photochem Photobiol B Biol, 9(2): 239-244
    Raven J A, Giordano M, Beardall J, et al. 2011. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthetic Research, 109(1-3): 281-296
    Raven J A, Giordano M, Beardall J, et al. 2012. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society B, 367: 493-507
    Raven J A, Beardall J, Johnston A M, et al. 1995. Inorganic carbon acquisition by Hormosira banksii (Phaeophyta: Fucales) and its epiphyte Notheia anomala (Phaeophyta: Fucales). Phycologia, 34(4): 267-277
    Riebesell U, Schulz K G, Bellerby R G J, et al. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450(7169): 545-548
    Schulz K G, Barcelose Ramos J, Zeebe R E, et al. 2009. CO2 perturbation experiments: similarities and differences between dissolved inorganic carbon and total alkalinity manipulations. Biogeosciences, 6: 2145-2153
    Suárez-álvarez S, Gómez-Pinchetti J L, García-Reina G. 2012. Effects of increased CO2 levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales, Rhodophyta). Journal of Applied Phycology, 24(4): 815-823
    Taga M S, Miller E E, Pratt D E. 1984. Chia seeds as a source of natural lipid antioxidants. Jornal of American Oil Chemists Society, 61(5): 928-931
    The Royal Society. 2005. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide. Policy Document 12/05. London:The Royal Society, 57
    Wu Xiaojuan, Gao Guang, Giordano M, et al. 2012. Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiation. Fundam Appl Limnol, 180(4): 279-290
    Wu Y, Gao K, Riebesell U. 2010. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences, 7: 2915-2923
    Xu Juntian, Gao Kunshan. 2012. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiology, 160(4): 1762-1769
    Zou Dinghui. 2005. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta).Aquaculture, 250(3-4): 726-735
    Zou Dinghui, Gao Kunshan, Ruan Zuoxi. 2007. Daily timing of emersion and elevated atmospheric CO2 concentration affect photosynthetic performance of the intertidal macroalgae Ulva lactuca (Chlorophyta) in sunlight. Botanica Marina, 50: 275-279
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (922) PDF downloads(1250) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint