LI Yan, LIU Qun, LI Chaolun, DONG Yi, ZHANG Wenyan, ZHANG Wuchang, XIAO Tian. Bacterial and archaeal community structures in the Arctic deep-sea sediment[J]. Acta Oceanologica Sinica, 2015, 34(2): 93-113. doi: 10.1007/s13131-015-0624-9
Citation: LI Yan, LIU Qun, LI Chaolun, DONG Yi, ZHANG Wenyan, ZHANG Wuchang, XIAO Tian. Bacterial and archaeal community structures in the Arctic deep-sea sediment[J]. Acta Oceanologica Sinica, 2015, 34(2): 93-113. doi: 10.1007/s13131-015-0624-9

Bacterial and archaeal community structures in the Arctic deep-sea sediment

doi: 10.1007/s13131-015-0624-9
  • Received Date: 2014-03-03
  • Rev Recd Date: 2014-07-18
  • Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover melting are affecting the microbial diversity. To characterize the Arctic deep-sea sediment microbial diversity and its rela-tionship with environmental factors, we applied Roche 454 sequencing of 16S rDNA amplicons from Arctic deep-sea sediment sample. Both bacterial and archaeal communities' richness, compositions and structures as well as tax-onomic and phylogenetic affiliations of identified clades were characterized. Phylotypes relating to sulfur reduction and chemoorganotrophic lifestyle are major groups in the bacterial groups; while the archaeal community is domi-nated by phylotypes most closely related to the ammonia-oxidizing Thaumarchaeota (96.66%) and methanogenic Euryarchaeota (3.21%). This study describes the microbial diversity in the Arctic deep marine sediment (>3 500 m) near the North Pole and would lay foundation for future functional analysis on microbial metabolic processes and pathways predictions in similar environments.
  • loading
  • Aller J Y, Kemp P F. 2008. Are Archaea inherently less diverse than Bacteria in the same environments? FEMS Microbiology Ecology, 65(1): 74-87
    Arnosti C. 2008. Functional differences between Arctic seawater and sedimentary microbial communities: contrasts in microbial hyd-rolysis of complex substrates. FEMS Microbiology Ecology, 66(2): 343-351
    Auguet J C, Barberan A, Casamayor E O. 2009. Global ecological patt-erns in uncultured Archaea. The ISME Journal, 4(2): 182-190
    Bano N, Ruffin S, Ransom B,et al. 2004. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarct-ic assemblages. Applied and Environmental Microbiology, 70(2): 781-789
    Bland J, Brock T D. 1973. The marine bacterium Leucothrix mucor as an algal epiphyte. Marine Biology, 23(4): 283-292
    Boetius A, Albrecht S, Bakker K, et al. 2013. Export of algal biomass from the melting Arctic Sea ice. Science, 339(6126): 1430-1432
    Boetius A, Damm E. 1998. Benthic oxygen uptake, hydrolytic potenti-als and microbial biomass at the Arctic continental slope. Deep-Sea Research Part I: Oceanographic Research Papers, 45(2-3): 239-275
    Bowman JP, McCuaig RD. 2003. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic contine-ntal shelf sediment. Applied and Environmental Microbiology, 69(5): 2463-2483
    Bowman J S, Rasmussen S, Blom N,et al. 2011. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. The ISME Journal, 6(1):11-20
    Clarke A. 2003. The polar deep seas. In: Ecosystems of the World. The Netherlands: Elsevier Science, 239-260
    Cottrell M T, Kirchman D L. 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter clust-er consuming low-and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology, 66(4): 1692-1697
    Deming J W. 1986. Ecological strategies of barophilic bacteria in the deep ocean. Microbiological Sciences, 3(7): 205-211
    Fahl K, Stein R. 1997. Modern organic carbon deposition in the Laptev Sea and the adjacent continental slope: surface water productivity vs. terrigenous input. Organic Geochemistry, 26(5-6): 379-390
    Forschner S R, Sheffer R, Rowley D C, et al. 2009. Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic Basin. Environmental Microbiology, 11(3): 630-639
    Galand P E, Casamayor E O, Kirchman D L,et al. 2009. Unique archa-eal assemblages in the Arctic Ocean unveiled by massively par-allel tag sequencing. The ISME Journal, 3(7): 860-869
    Gooday A J, Turley C M, Allen J A. 1990. Responses by benthic organi-sms to inputs of organic material to the ocean floor: a review. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 331(1616): 119-138
    Gosselin M, Levasseur M, Wheeler P A,et al. 1997. New measure-ments of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanogra-phy, 44(8): 1623-1644
    Hinzman L D, Bettez N D, Bolton W R,et al. 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change, 72(3): 251-298
    Huson D H, Mitra S, Ruscheweyh H J,et al. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Research, 21(9): 1552-1560
    Jacob M, Soltwedel T, Boetius A, et al. 2013. Biogeography of deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic). PLoS One, 8(9): e72779
    Jannasch H W, Taylor C D. 1984. Deep-sea microbiology. Annual Review of Microbiology, 38(1): 487-487
    Jørgensen B B. 1982. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature, 296(5858): 643-645
    Kasai Y, Kishira H, Sasaki T,et al. 2002. Predominant growth of Alcani-vorax strains in oil-contaminated and nutrient-supplemented sea water. Environmental Microbiology, 4(3): 141-147
    Kirchman D L. 2002. The ecology of Cytophaga-Flavobacteria in aqu-atic environments. FEMS Microbiology Ecology, 39(2): 91-100
    Kirchman D L, Morán X A G, Ducklow H. 2009. Microbial growth in the polar oceans—role of temperature and potential impact of cli-mate change. Nature Reviews Microbiology, 7(6): 451-459
    Luo Haiwei. 2012. Predicted protein subcellular localization in domi-nant surface ocean bacterioplankton. Applied and Environmental Microbiology, 78(18): 6550-6557
    Macdonald R W, Solomon S M, Cranston R E,et al. 1998. A sediment and organic carbon budget for the Canadian Beaufort Shelf. Mari-ne Geology,144(4): 255-273
    Methé B A, Nelson K E, Deming J W,et al. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychr-erythraea 34H through genomic and proteomic analyses. Procee-dings of the National Academy of Sciences of the United States of America, 102(31): 10913-10918
    Mori K, Iino T, Suzuki K I,et al. 2012. Aceticlastic and NaCl-requiring methanogen "Methanosaeta pelagica" sp. nov., isolated from marine tidal flat sediment. Applied and Environmental Microbiol-ogy, 78(9): 3416-3423
    Nedashkovskaya O I, Kim S B, Han S K,et al. 2004. Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedime-nticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orient-alis sp. nov. and Maribacter ulvicola sp. nov. International Journal of Systematic and Evolutionary Microbiology, 54(Pt4): 1017-1023
    Perdue E M, Koprivnjak J F. 2007. Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Est-uarine, Coastal and Shelf Science, 73: 65-72
    Pester M, Schleper C, Wagner M. 2011. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Current Opinion in Microbiology, 14(3): 300-306
    Peterson B J, Holmes R M, McClelland J W,et al. 2002. Increasing river discharge to the Arctic Ocean. Science, 298(5601): 2171-2173
    Price M N, Dehal P S, Arkin A P, et al. 2010. FastTree—approximately maximum-likelih湯獯?椠湴?敥慥獳琠敦牯湲?捬敡湲瑧牥愠污??牧据瑭楥据?佳挮攠慐湬?獓甠牏普慥挬攠‵猨攳搩椺洠改渴琹猰???愾牐楲湵敥??敥漠汅漬朠祑????????????????????戠牡?匮琠攲椰渰?刮???慌捖?漺渠慡氠摣?剭?坲???のび???吠桯敮?佩牮来愠湲楥捳??慲牣扥漠湦??礠捱汵敡?楩湴?琠档敨??牫捥?琠楡据?传捡敬慩湧???攠牲汩楢湯??卭灡牬椠湒李敁爠?噥敱牵汥慮杣?戠牤?却畡稠畣歯業???呩??剥愠灷灩整???卒???慎極浣扬敥物杣攠牁?婩?坳?敒瑥?慥污?????????愱挩琺攠爷椱愸永?搷椱瘹收爼獢楲琾祑?慡浳潴渠权?猠浐慲汵汥?獳略戠畅測椠瑙?牬剭乡??材攬湥整?捡汬漮渠攲猰?愳渮搠?捨敥氠汓畉汌慖牁?楲獩潢?汳慯瑭敡獬?晒牎潁洠?瑥桮敥?獤慡浴敡?獡敳慥眠慰瑲敯牪?獣慴洺瀠汩敭???灶灥汤椠敤摡?慡渠摰??湣癥楳牳潩湮浧攠湡瑮慤氠??楢挭牢潡扳楥潤氠潴杯祯?????????????????戠牒?味敥獡歲散?????用牄戱椩渺???‰娭椵改父瘼潢杲放汒???敲瑥?慔汥??金??????椠捒爺漠扁椠慌污?捧潵浡浧略渠楡瑮祤?捅潮浶?灲潯獮業瑥楮潴渠?慯湲搠?晴畡湴捩瑳楴潩湣?楬渠?灯敭牰浵慴湩敮湧琮氠祖?捥潮汮摡?猠敁慵睳慴瑲敩牡?愠湒搠?獯敵摮楤浡整?湯瑮猠?景牲漠浓?慡湴??牴捩瑣楡捬?晃橯潭牰摵?潩普?匼癢慲氾扒慡牰摰???瀠灓氬椠敋摥?慰渠摐??測瘠楇物潯湶浡敮湮瑯慮汩??楊挮爠漱戹椹漷氮漠材票???????????つ???ひ???批爠?呦栠潭浡慲獩???乣???慴牡慬?剰?????楡据歫整湯???收瑓?慲汒??ㄠ??????楣獬獯潮汥癤攠摦?潯牭朠慴湨楥挠?浯慮瑴瑩敮牥?楴湡??牳捨瑥楬捦?浯畦汦琠楃?祰敥愠版?獴整慥?楡捳攬?摎畯牲楴湨朠?睡楲湯瑬敩牮??洠慌橩潭牮?捬潯浧灹漠湡敮湤琠獏?慥湡摮?牧敲污慰瑨楹漬渠猴栲椨瀵?琺漠?椱挱攭?挲栶愼牢慲挾瑒敡牶楥獮瑳楣捨獬??倠潋氬愠牓??業漠汋漬朠祁????????′????????扮牴?呴楡慴湩??攠業??奥畣?奬潡湲朠???桬敹湳??漠?敦琠?慨汥???っひ????慬挠瑣敯牭業慵汮??慹爠捩桮愠敭慡汲?慮湥搠?敲畣歴慩牣?祳潥瑤楩捭?摮楴癳攠爨獓楶瑡祬?楡湲??爮挠瑁楰捰?獩敥摤椠浡敮湤琠?慮獶?牲敯癮敭慥汮整摡?戠祍???卯?物副乬??慹測搠???匱?爺删丳??札攳渹攵?换汲漾湒敡?汥楮扳牣慨牬楡敧猠?愬渠慓污票獭椠獋??偐潥汲慮牴??楬潥汲漠杊礬????????????ㄠえ??扨爠?坡慣杴湥敲物????????戭汳敩牴?????楰敥扲汭?????ぬべ????湤瘠業牡潲湩浮敥渠瑳慥汤?扭楥潮汴潳朮礠?潰晰?瑩桥敤?浡慮牤椠湅敮?剩潲獯敮漭扭慥据瑴敡牬?汍楩湣敲慯杢敩???湧湹甬?制攵瘨??椺挠爳漹戸椲漭氳?????????????水?あ?扲牮?坮慧湥杲?奕慇渮??夹甹??椠湁???畤獡瑮楣湥????敲瑴?慣污???ど????佢汵整楩獯灮椬爠慡?汤攠湣瑯慭?獵灮??湹漠癳???慣?湵潲癥攠汯?洠慢牥楮湴敨?扣愠捰瑲敯牫楡畲浹?楴獥潳氠慦瑲敯摭?晰牥潲浭?奮敥汮汴潬睹?獣敯慬?挠潭慡獲瑩慮汥?獳敥慤睩慭瑥敮牴?椠渨?其楡湬杢摡慲潤???桲楣湴慩???湣瑥潡湮椩攮?癍慡湲??敥攠畅督敯湬桯潧敹欠???で??????????????戶爵?圠样攱攭永攰爼?偲 ̄????漠獋猬攠汋楮湯????卣桨攠牃爬???敡瑮?愠汒?????????捨瑹楬癯敧?据祥捴汩楣渠条?潦晩?潩牡杴慩湯楮挠?据慤爠扱潵湡?楴湩?瑩档敡?捩敯湮琠牯慦氠??特捣瑨楲捯?佨捩敬慩湣??乵慬瑦畡牴敥????ふ????????????????戠牭?婲敩湮来?奡楲湣硴楩湣??婥潤畩?奥慮湴杳???桰数湬??潤?敡瑮?愠汅???ひ????偮桴祡汬漠杍敩湣敲瑯楢捩?摬楯癧敹爬猠椶琵礨?漩昺?猳改搷椶洭攳渹琸?戼慢捲琾敓牣楨慬?楳湳?瑐栠敄?渠潗牥瑳桴散牯湴??敓爠楌測朠?卹敡慢??倠潔氬慥牴??楬漮氠漲朰礰??????????っ???ㄠmothur: open-source, platform-independent, community-supported soft-ware for describing and comparing microbial communities. Appl-ied and Environmental Microbiology, 75(23): 7537-7541
    Smith K S, Ingram-Smith C. 2007. Methanosaeta, the forgotten meth-anogen? Trends in Microbiology, 15(4): 150-155
    Stein R, Grobe H, Wahsner M. 1994. Organic carbon, carbonate, and clay mineral distributio
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1600) PDF downloads(1017) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint