ZHANG Taoliang, WANG Rujian, XIAO Wenshen, CHEN Zhihua, CHEN Jianfang, CHENG Zhenbo, SUN Yechen. Ice rafting history and paleoceanographic reconstructions of Core 08P23 from southern Chukchi Plateau, western Arctic Ocean since Marine Isotope Stage 3[J]. Acta Oceanologica Sinica, 2015, 34(3): 68-75. doi: 10.1007/s13131-015-0609-8
Citation: ZHANG Taoliang, WANG Rujian, XIAO Wenshen, CHEN Zhihua, CHEN Jianfang, CHENG Zhenbo, SUN Yechen. Ice rafting history and paleoceanographic reconstructions of Core 08P23 from southern Chukchi Plateau, western Arctic Ocean since Marine Isotope Stage 3[J]. Acta Oceanologica Sinica, 2015, 34(3): 68-75. doi: 10.1007/s13131-015-0609-8

Ice rafting history and paleoceanographic reconstructions of Core 08P23 from southern Chukchi Plateau, western Arctic Ocean since Marine Isotope Stage 3

doi: 10.1007/s13131-015-0609-8
  • Received Date: 2014-04-10
  • Rev Recd Date: 2014-10-16
  • Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Marine Isotope Stage (MIS) 3 by a combination of Accelerator Mass Spectrometric (AMS) carbon-14 dating and regional core correlation. A total of five prominent ice-rafted detritus (IRD) events were recognized in MIS 2 and MIS 3. The IRD sources in MIS 3 are originated from vast carbonate rock outcrops of the Canadian Arctic Archipelago and clastic quartz in MIS 2 may have a Eurasian origin. Most δ18O and δ13C values of Neogloboquadrina pachyderma (sinistral) (Nps) in Core 08P23 are lighter than the average values of surface sediments. The lighter δ18O and δ13C values of Nps in the two brown layers in MIS 1 and MIS 3 were resulted from meltwater events; and those in the gray layers in MIS 3 were caused by the enhanced sea ice formation. The δ18O values varied inversely with δ13C in MIS 2 indicate that the study area was covered by thick sea ice or ice sheet with low temperature and little meltwater, which prevented the biological productivity and sea-atmosphere exchange, as well as water mass ventilation. The covaried light values of δ18O and δ13C in MIS 1 and MIS 3 were resulted from meltwater and/or brine injection.
  • loading
  • Aagaard K, Coachman L K, Carmack E. 1981. On the halocline of the Arctic Ocean. Deep-Sea Research Part A. Oceanographic Research Papers, 28(6): 529-545
    Adler R E, Polyak L, Ortiz D, et al. 2009. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Global and Planetary Change, 68(1-2): 18-29
    Backman J, Jakobsson M, Løvlie R, et al. 2004. Is the central Arctic Ocean a sediment starved basin?. Quaternary Science Reviews, 23(11-13): 1435-1454
    Bates N R, Mathis J T. 2009. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences, 6(11): 2433-2459
    Bauch D, Carstens J, Wefer G. 1997. Oxygen isotope composition of living Neogloboquadrina pachyderma (sin.) in the Arctic Ocean. Earth and Planetary Science Letters, 146(1-2): 47-58
    Bischof J F, Clark D L, Vincent J S. 1996. Origin of ice-rafted debris: Pleistocene paleoceanography in the western Arctic Ocean. Paleoceanography, 11(6): 743-756
    Bischof J F, Darby D A. 1997. Mid-to Late Pleistocene ice drift in the Western Arctic Ocean: evidence for a different circulation in the past. Science, 277(5322): 74-78
    Clark D L, Whitman R, Morgan K A, et al. 1980. Stratigraphy and glacial- marine sediments of the Amerasian Basin, central Arctic Ocean. The Geological Society of America, 181(1): 1-65
    Comiso J C, Steffen K. 2008. Introduction to special section on largescale characteristics of the sea ice cover from AMSR-E and other satellite sensors. Journal of Geophysical Research, 113(C2): C02S01
    Coulthard R D, Furze M F A, Pieńkowski A J, et al. 2010. New marine ΔR values for Arctic Canada. Quaternary Geochronology, 5(4): 419-434
    Darby D A, Bischof J F, Jones G A. 1997. Radiocarbon chronology of depositional regimes in the western Arctic Ocean. Deep-Sea Research Part II, Topical Studies in Oceanography, 44(8): 1745-1757
    Darby D A, Jakobsson M, Polyak L. 2005. Icebreaker expedition collects key Arctic seafloor and ice data. EOS, Transactions American Geophysical Union, 86(52): 549-552
    Darby D A, Naidu A S, Mowatt T C, et al. 1989. Sediment composition and sedimentary processes in the Arctic Ocean. In: Herman Y, ed. The Arctic Seas. New York: Springer, 657-720
    Darby D A, Zimmerman P. 2008. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events. Polar Research, 27(2): 114-127
    Dieckmann G S, Hellmer H H. 2003. Sea ice: an introduction to its physics, chemistry, biology and geology. In: Thomas D N, Dieckmann G S, eds. The Importance of Sea Ice: an Overview. Hoboken: John Wiley & Sons, Inc, 1-21
    Dong Linsen, Liu Yanguang, Shi Xuefa, et al. 2014. Distributions and sources of clay minerals in the suiface sediments of the western Arctic Ocean. Haiyang Xuebao (in Chinese), 36(4): 22-32, doi: 10.3969/j.issn. 0253-4193.2014.04.10
    Duplessy J C. 1978. Isotope studies. In: Gribbin J, ed. Climate Change. Cambridge: Cambridge University Press, 47-67
    Eynaud F. 2011. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and quaternary populations. Earth and Environmental Science, 14(1): 012005
    Fairbanks R G, Mortlock R A, Chiu T C, et al. 2005. Radiocarbon calibration curve spanning 0 to 50 000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews, 24(16-17): 1781-1796
    Farmer J, Cronin T, de Vernal A, et al. 2011. Western Arctic Ocean temperature variability during the last 8 000 years. Geophysical Research Letters, 38(24): L24602
    Hanslik D, Jakobsson M, Backman J, et al. 2010. Quaternary Arctic Ocean sea ice variations and radiocarbon reservoir age corrections. Quaternary Science Reviews, 29(25-26): 3430-3441
    Hillaire-Marcel C, de Vernal A. 2008. Stable isotope clue to episodic sea ice formation in the glacial North Atlantic. Earth and Planetary Science Letters, 268(1-2): 143-150
    Hillaire-Marcel C, de Vernal A, Polyak L, et al. 2004. Size-dependent isotopic composition of planktic foraminifers from Chukchi Sea vs. NW Atlantic sediments-implications for the Holocene paleoceanography of the western Arctic. Quaternary Science Reviews, 23(3-4): 245-260
    Holmes R M, McClelland J W, Peterson B J, et al. 2002. A circumpolar perspective on fluvial sediment flux to the Arctic Ocean. Global Biogeochemical Cycles, 16(4): 45-1-45-14
    Jahn A, Holland M M. 2013. Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. Geophysical Research Letters, 40(6): 1206-1211
    Jakobsson M, Løvlie R, Al-Hanbali H, et al. 2000. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology, 28(1): 23-26
    Jones E P. 2001. Circulation in the Arctic Ocean. Polar Research, 20(2): 139-146
    Jones A, Kaiteris P. 1983. A vacuum-gasometric technique for rapid and precise analysis of calcium carbonate in sediments and soils. Journal of Sedimentary Research, 53(2): 655-660
    Liu Weinan, Wang Rujian, Chen Jianfang, et al. 2011. Late Quaternary terrigenous sedimentation in the Western Arctic Ocean as exemplified by a sedimentary record from the Alpha Ridge. Advances in Polar Science (in Chinese), 22(4): 215-222
    Löwemark L, Jakobsson M, Mörth M, et al. 2008. Arctic Ocean manganese contents and sediment colour cycles. Polar Research, 27(2): 105-113
    Löwemark L, März C, O'Regan M, et al. 2014. Arctic Ocean Mn-stratigraphy: genesis, synthesis and inter-basin correlation. Quaternary Science Reviews, 92: 97-111
    Lubinski D J, Polyak L, Forman S L. 2001. Freshwater and Atlantic water inflows to the deep northern Barents and Kara seas since ca 13 14C ka: foraminifera and stable isotopes. Quaternary Science Reviews, 20(18): 1851-1879
    Macdonald R C, Gobeil C. 2012. Manganese sources and sinks in the Arctic Ocean with reference to periodic enrichments in basin sediments. Aquatic Geochemistry, 18(6): 565-591
    März C, Stratmann A, Matthiessen J, et al. 2011. Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint. Geochimica et Cosmochimica Acta 75: 7668-7687
    Mei Jing, Wang Rujian, Chen Jianfang, et al. 2012. Late Quaternary terrigenous deposits from Core P31 on the Chukchi Plateau of
    Western Arctic Ocean and their paleoceanographic and paleoclimatic implications. Marine Geology & Quaternary Geology (in Chinese), 32(3): 77-86
    Nørgaard-Pedersen, Mikkelsen N, Kristoffersen Y. 2007. Arctic Ocean record of last two glacial-interglacial cycles off North Greenland/Ellesmere Island-Implications for glacial history. Marine Geology, 244(1-4): 93-108
    O'Regan M, John K, Moran K, et al. 2010. Plio-Pleistocene trends in ice rafted debris on the Lomonosov Ridge. Quaternary International, 219(1-2): 168-176
    Parkinson C L, Cavalieri D J. 2008. Arctic sea ice variability and trends, 1979-2006. Journal of Geophysical Research: Oceans (1978-朠′到由樲椩愬渠??倳漨汃礷愩欺????攰琰″愼汢? ̄?と????印瑳愠扒氠敌?漠硇祲条敮湴?愠湁搮?挲愰爰戱漮渠?楥獧潩瑯潮灡敬猠?楡湲?灡汴慩湯歮瑳漠湩楮挠?晲潯牶慥浮楡湮楣晥攠牡慮?丠敡潢杵汮潤扡潮煣略愠摯牦椠湩慣?瀭慲捡桦祴摥敤爠浣慬?楳湴?琠桩敮??牲捣瑴楩捣?住捣敥慡湮??慥湤?潭癥敮牴癳椺攠睩?潰晬?灣畡扴汩楯獮桳攠摦?慲渠摴?湥攠督?獮畦物晧慵捲敡?獩敯摮椠浯敦渠瑬?摴慥琠慑???慥牲楮湡敲??敯潣汥潡杮祩????????????と??扩牣?奣畩牲捣潵???乩???佩牮琠楴穨??????偩潣氮礠慍歡????攠瑇?慯汬????ㄠ??′?氱愩示?洹椱渭攱爱愵氼?捲社捐汯敬獹?楫搠敌測琠楂晩楳散摨?扦礠?搬椠晏晲畴獩敺?獊瀠敄挬琠牥慴氠?牬攮映氲攰挰琹愮渠捌敡?楥渠?兵畡慴瑥敲牮湡慲特礠?獴敲摡楴浩敧湲瑡獰?晹爠潡浮?琠桳敥?乩潭牥瑮桴睡楴湩摯?删楰摡杴整??楮浳瀠汩楮挠慴瑨楥漠湷獥?晴潥牲?朠汁慲捣楴慩汣?楏湣瑥敡牮朮氠慇捬楯慢污?猠敡摮楤洠敐湬瑡慮瑥楴潡湲?瀠慃瑨瑡敮牧湥猬?椶游?琱栭攲??爠挵琭椱挷?佢捲放慐湯??偡潫氠慌爬?剃敵獲敲慹爠捗栠??㈠???????ㄠ???扥牴?婡桬愮渠朲‰?愴椮猠桃敯湮杴???ぴど???呧桬敡?剩敡灬漯物瑮?潥晲??ちっ???栠楲湥敧獩敭??爠捩瑮椠捴?剥攠獷敥慳牴捥桲??硁灲散摴楩瑣椠潏湣??楮渠??栠楥湸敥獭数????敥楤樠楢湹朠???桥楤湩慭?佮捴敡慲湹?偲牥散獯獲d from the Mendeleev Ridge. Palaeogeography, 203(1-2): 73-93
    Polyak L, Edwards M H, Coakley B J, et al. 2001. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature, 410(6827): 453-457
    Poore R Z, Osterman L, Curry W B, et al. 1999. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean. Geology, 27(8): 759-762
    Sarnthein M, Winn K, Jung S J A, et al. 1994. Changes in east Atlantic deepwater circulation over the last 30000 years: eight time slice reconstructions. Paleoceanography, 9(2): 209-267
    Shackleton N J. 1974. Attainment of isotopic equilibrium between ocean water and the benthic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. In: Labeyrie L, ed. Variation du Climat au Cours du Pleistocène Vol: 219. Paris: Colloques Internationaux du C N R S, 203-209
    Spielhagen R F, Baumann K, Erlenkeuser H, et al. 2004. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quaternary Science Reviews, 23(11-13): 1455-1483
    Spielhagen R F, Bonani G, Eisenhauer A, et al. 1997. Arctic Ocean evidence for Late Quaternary initiation of northern Eurasian ice sheets. Geology, 25(9): 783-786
    Spielhagen R F, Erlenkeuser H. 1994. Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments: Reflection of the low salinity surface water layer. Marine Geology, 119(3-4): 227-250
    Stärz M, Gong Xun, Stein R, et al. 2012. Glacial shortcut of Arctic sea-ice transport. Earth and Planetary Science Letters, 357-358, 257-267
    Stein R, Matthießen J, Niessen F, et al. 2010. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79(2): 97-121
    Stroeve J, Holland M M, Meier W, et al. 2007. Arctic sea ice decline: faster than forecast. Geophysical Research Letters, 34(9): L09501
    Thomas D N, Dieckmann G S. 2003. Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Geology. Chapter 4. New York: Wiley-Blackwell, 112-141
    Wang Rujian, Xiao Wenshen, Cheng Xinrong, et al. 2009. Sea ice formation rates recorded in planktonic foraminiferal oxygen and carbon isotopes in the western Arctic Ocean during the late quaternary. Advances in Earth Science (in Chinese), 24(6): 643-651
    Wang Rujian, Xiao Wenshen, Li Wenbao, et al. 2010. Late Quaternary ice-rafted detritus events in the Chukchi Basin, western Arctic Ocean. Chinese Sci Bull, 55(4-5): 432-440
    Wang Rujian, Xiao Wenshen, März C, et al. 2013. Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean. Global and Planetary Change, 108: 100-118
    Weingartner T J, Danielson S L, Royer T C. 2005. Freshwater variability and predictability in the Alaska Coastal Current. Deep-Sea Research Part II. Topical Studies in Oceanography, 52(1-2): 169-191
    Woodgate R A, Aagaard K, Weingartner T J. 2005. A year in the physical oceanography of the Chukchi Sea: moored, measurements from autumn 1990-1991. Deep-Sea Research Part II: Topical Studies in Oceanography, 52(24-26): 3116-3149
    Xiao Wenshen, Wang Rujian, Cheng Xinrong. 2011. Stable oxygen and carbon isotopes from the planktonic foraminifera Neogloboquadrina pachyderma in the western Arctic surface sediments: implications for water mass distribution. Advances in Polar Science (in Chinese), 22(4): 205-214
    Xiao Wenshen, Wan
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1300) PDF downloads(1676) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint