HAN Hongwei, LI Zhijun, HUANG Wenfeng, LU Peng, LEI Ruibo. The uniaxial compressive strength of the Arctic summer sea ice[J]. Acta Oceanologica Sinica, 2015, 34(1): 129-136. doi: 10.1007/s13131-015-0598-7
Citation: HAN Hongwei, LI Zhijun, HUANG Wenfeng, LU Peng, LEI Ruibo. The uniaxial compressive strength of the Arctic summer sea ice[J]. Acta Oceanologica Sinica, 2015, 34(1): 129-136. doi: 10.1007/s13131-015-0598-7

The uniaxial compressive strength of the Arctic summer sea ice

doi: 10.1007/s13131-015-0598-7
  • Received Date: 2014-04-01
  • Rev Recd Date: 2014-08-29
  • The results on the uniaxial compressive strength of Arctic summer sea ice are presented based on the samples collected during the fifth Chinese National Arctic Research Expedition in 2012 (CHINARE-2012). Experimental studies were carried out at different testing temperatures (-3, -6 and -9℃), and vertical samples were loaded at stress rates ranging from 0.001 to 1 MPa/s. The temperature, density, and salinity of the ice were measured to calculate the total porosity of the ice. In order to study the effects of the total porosity and the density on the uniaxial compressive strength, the measured strengths for a narrow range of stress rates from 0.01 to 0.03 MPa/s were analyzed. The results show that the uniaxial compressive strength decreases linearly with increasing total porosity, and when the density was lower than 0.86 g/cm3, the uniaxial compressive strength increases in a power-law manner with density. The uniaxial compressive behavior of the Arctic summer sea ice is sensitive to the loading rate, and the peak uniaxial compressive strength is reached in the brittle-ductile transition range. The dependence of the strength on the temperature shows that the calculated average strength in the brittle-ductile transition range, which was considered as the peak uniaxial compressive strength, increases steadily in the temperature range from -3 to -9℃.
  • loading
  • Cole d M. 1987. Strain rate and grain size effects in ice. Journal of Glaciology, 33(115): 274-280
    Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35: L01703, doi: 10.1029/2007GL031972
    Cox G F N, Weeks W F. 1983. Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology, 29(102): 306-316
    dutta P K, Cole d M, Schulson E M, et al. 2003. A fracture study of ice under high strain rate loading. In: Proceedings of the Thirteenth International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA
    Eicken H, Ackley S F, Richter-Menge J A, et al. 1991. Is the strength of sea ice related to its chlorophyll content?. Polar Biology, 11(5): 347-350
    Holland M M, Bitz C M, Tremblay B. 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters, 33: L23503, doi: 10.1029/2006GL028024
    Huang Wenfeng, Lei Ruibo, Ilkka M, et al. 2013. The physical structures of snow and sea ice in the Arctic section of 150°-180° W during the summer of 2010. Acta Oceanologica Sinica, 32(5): 57-67
    Hunke E C, Notz d, Turner A K, et al. 2011. The multiphase physics of sea ice: a review for model developers. The Cryosphere, 5(4): 989-1009
    Jones S J. 1997. High strain-rate compression tests on ice. The Journal of Physical Chemistry: B, 101(32): 6099-6101
    Kermani M, Farzaneh M, Gagnon R. 2007. Compressive strength of atmospheric ice. Cold Regions Science and Technology, 49(3): 195-205
    Kondo H, Otsuka N, Takeuchi T, et al. 2004. Uniaxial compressive strength of sea ice along the coast of Hokkaido and Sakhalin. In: Proceedings of the Sixth ISOPE Pacific/Asia Offshore Mechanics Symposium. Vladivostok, Russia
    Leppäranta M, Manninen T. 1988. The brine and gas content of sea ice with attention to low salinities and high temperatures. Internal Rep 88-2. Helsinki: Finnish Institute for Marine Research
    Li Zhijun, Zhang Limin, Lu Peng, et al. 2011. Experimental study on the effect of porosity on the uniaxial compressive strength of sea ice in Bohai Sea. Science China: Technological Sciences, 54(9): 2429-2436
    Liu M, Kronbak J. 2010. The potential economic viability of using the Northern Sea Route (NSR) as an alternative route between Asia and Europe. Journal of Transport Geography, 18(3): 434-444
    Moslet P O. 2007. Field testing of uniaxial compression strength of columnar sea ice. Cold Regions Science and Technology, 48(1): 1-14
    Rodrigues J. 2008. The rapid decline of the sea ice in the Russian Arctic. Cold Regions Science and Technology, 54(2): 124-142
    Schulson E M. 2001. Brittle failure of ice. Engineering Fracture Mechanics, 68(17): 1839-1887
    Schwarz J, Frederking R M W, Gavrillo V, et al. 1981. Standardized testing methods for measuring mechanical properties of ice. Cold Regions Science and Technology, 4(3): 245-253
    Sinha N K. 1982. Constant strain and stress-rate compressive strength of columnar-grained ice. Journal of Materials Science, 17(3): 785-802
    Sinha N K. 1984. Uniaxial compressive strength of first-year and multi-year sea ice. Canadian Journal of Civil Engineering, 11(1): 82-91
    Sinha N K. 1988. Experiments on anisotropic and rate-sensitive strain ratio and modulus of columnar-grained ice. Journal of Offshore Mechanics and Arctic Engineering, 111(4): 354-360
    Sjölind S G. 1987. A constitutive model for ice as a damaging visco-elastic material. Cold Regions Science and Technology, 14(3): 247-262
    Sodhi d S, Takeuchi T, Nakazawa N, et al. 1998. Medium-scale indentation tests on sea ice at various speeds. Cold Regions Science and Technology, 28(3): 161-182
    Stroeve J, Holland M M, Meier W, et al. 2007. Arctic sea ice decline: faster than forecast. Geophysical Research Letters, 34: L09501, doi: 10.1029/2007GL029703
    Timco G W, Frederking R M W. 1990. Compressive strength of sea ice sheets. Cold Regions Science and Technology, 17(3): 227-240
    Timco G W, Frederking R M W. 1996. A review of sea ice density. Cold Regions Science and Technology, 24(1): 1-6
    Timco G W, Weeks W F. 2010. A review of the engineering properties of sea ice. Cold Regions Science and Technology, 60(2): 107-129
    Vancoppenolle M, Fichefet T, Goosse H. 2009. Simulating the mass balance and salinity of Arctic and Antarctic sea ice: 2. Importance of sea ice salinity variations. Ocean Modelling, 27(1): 54-69
    Vancoppenolle M, Fichefet T, Goosse H, et al. 2009. Simulating the mass balance and salinity of Arctic and Antarctic sea ice: 1. Model description and validation. Ocean Modelling, 27(1): 33-53
    Verny J, Grigentin C. 2009. Container shipping on the Northern Sea Route. International Journal of Production Economics, 122(1): 107-117
    Yue Qianjin, Ren Xiaohui, Chen Jubin. 2005. The test and mechanism investigation on ductile-brittle transition of sea ice. Journal of Basic Science and Engineering (in Chinese), 13(1): 35-42
    Zhang J, Lindsay R, Steele M, et al. 2008. What drove the dramatic retreat of arctic sea ice during summer 2007?. Geophysical Research Letters, 35: L11505, doi: 10.1029/2008GL034005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1584) PDF downloads(1926) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return