LI Xiang, SU Jie, ZHAO Jinping. An evaluation of the simulations of the Arctic Intermediate Water in climate models and reanalyses[J]. Acta Oceanologica Sinica, 2014, 33(12): 1-14. doi: 10.1007/s13131-014-0567-6
Citation: LI Xiang, SU Jie, ZHAO Jinping. An evaluation of the simulations of the Arctic Intermediate Water in climate models and reanalyses[J]. Acta Oceanologica Sinica, 2014, 33(12): 1-14. doi: 10.1007/s13131-014-0567-6

An evaluation of the simulations of the Arctic Intermediate Water in climate models and reanalyses

doi: 10.1007/s13131-014-0567-6
  • Received Date: 2014-03-28
  • Rev Recd Date: 2014-06-19
  • The simulations of the Arctic Intermediate Water in four datasets of climate models and reanalyses, CCSM3, CCSM4, SODA and GLORYS, are analyzed and evaluated. The climatological core temperatures and depths in both CCSM models exhibit deviations over 0.5℃ and 200 m from the PHC. SODA reanalysis reproduces relatively reasonable spatial patterns of core temperature and depth, while GLORYS, another reanalysis, shows a remarkable cooling and deepening drift compared with the result at the beginning of the dataset especially in the Eurasian Basin (about 2℃). The heat contents at the depth of intermediate water in the CCSM models are overestimated with large positive errors nearly twice of that in the PHC. To the contrary, the GLORYS in 2009 show a negative error with a similar magnitude, which means the characteristic of the water mass is totally lost. The circulations in the two reanalyses at the depth of intermediate water are more energetic and realistic than those in the CCSMs, which is attributed to the horizontal eddy-permitting resolution. The velocity fields and the transports in the Fram Strait are also investigated. The necessity of finer horizontal resolution is concluded again. The northward volume transports are much larger in the two reanalyses, although they are still weak comparing with mooring observations. Finally, an investigation of the impact of assimilation is done with an evidence of the heat input from assimilation. It is thought to be a reason for the good performance in the SODA, while the GLORYS drifts dramatically without assimilation data in the Arctic Ocean.
  • loading
  • Aksenov Y, Ivanov V V, Nurser A J G, et al. 2011. The arctic circumpolar boundary current. J Geophys Res, 116: C09017
    Beszczynska-Moller A, Fahrbach E, Schuaer U, et al. 2012. Variability in Atlantic water temperature and transport at the entrance to the
    Arctic Ocean, 1997-2010. ICES Journal of Marine Science, 69(4): doi: 10.1093/icesjms/fss056
    Carton J, Giese B. 2008. A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Wea Rev, 136: 2999-3017
    Collins W, Bitz C, Blackmon M, et al. 2006. The community climate system model version 3 (CCSM3). J Climate, 19: 2122-2143
    Dmitrenko I A, Kirillov S A, Serra N, et al. 2014. Heat loss from the Atlantic water layer in the St. Anna trough (northern Kara Sea): causes and consequences. Ocean Sci Discuss, 11: 543-573
    Fahrbach E, Meincke J, Østerhus S, et al. 2001. Direct measurements of volume transports through Fram Strait. Polar Res, 20(2): 217-224
    Ferry N, Parent L, Garric G, et al. 2012. GLORYS2V1 global ocean reanalysis of the altimetric era (1992-2009) at meso scale. Mercator Quarterly Newsletter, 44: 29-39
    Gent P R, McWilliams J C. 1990. Isopycnal mixing in ocean circulation models. J Phys Oceanogr, 20(1): 150-155
    Golubeva E N, Platov G A. 2007. On improving the simulation of Atlantic water circulation in the Arcitc Ocean. J Geophys Res, 112: C04S05
    Grotefendt K, Logemann K, Quadfasel D, et al. 1998. Is the Arctic Ocean warming? J Geophy Res, 103(C12): 27679-27687
    Holloway G. 1986. A shelf wave/topographic pump drives mean coastal circulation. Ocean Modelling, 68: 12-15
    Holloway G, Dupont F, Golubeva E, et al. 2007. Water properties and circulation in Arctic Ocean models. J Geophys Res, 112: C04S03
    Holloway G, Wang Z. 2009. Representing eddy stress in an Arctic Ocean model. J Geophys Res, 114: C06020
    Ivanov V V, Alexeev V A, Repina I A, et al. 2012. Tracing Atlantic water signature in the arctic sea ice cover east of Svalbard. Advances in Meteorology, 2012: 201818, doi: 10.1155/2012/201818
    Karcher M, Kauker F, Gerdes R, et al. 2007. On the dynamics of Atlantic water circulation in the Arctic Ocean. J Geophys Res, 112: C04S02
    Karcher M, Smith J, Kauker F, et al. 2012. Recent changes in Arctic Ocean circulation revealed by iodine-129 observations and modeling. J Geophys Res, 117: C08007
    Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4): 363-403
    Li Shujiang. 2008. A study on the arctic intermediate water's spatial distribution, temporal change and its dynamical process [dissertation] (in Chinese). Qingdao: Ocean University of China
    Li Shujiang, Zhao Jingping, Su Jie, et al. 2012. Warming and depth convergence of the arctic intermediate water in the Canada basin during 1985-2006. Acta Oceanol Sin, 31(4): 46-54
    Li Xiang, Su Jie, Zhang Yang, et al. 2011. Discussion on the simulation of arctic intermediate water under Nemo framework. In: Proceedings of Twentieth (2011) International Offshore and Polar Engineering Conference. Vol. 1. Hawaii: the International Society of Offshore and Polar Engineers (ISOPE), 953-957
    Li Xiang, Su Jie, Wang Zeliang, et al. 2013. Modeling arctic intermediate water: the effects of Neptune parameterization and horizontal resolution. Adv Polar Sci, 24(2): 98-105
    Lique C, Steele M. 2012. Where can we find a seasonal cycle of the Atlantic water temperature within the Arctic Basin. J Geophys Res, 117: C03026
    Madec G. 2008. Nemo ocean engine. note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France Madec G, Delecluse P, Imbard M, et al. 1998. OPA 8.1 ocean general circulation model reference manual. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL) McLaughlin F A, Carmack E C, Williams W J, et al. 2009. Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993-2007. J Geophys Res, 114: C00A12
    Pachauri R K, Reisinger A. 2007. Climate change 2007: synthesis report. In: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC
    Polyakov I V, Aleskseev G V, Timokhov L A, et al. 2004. Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. J Climate, 17: 4485-449
    Polyakov I V, Alexeev V V, Ashik I M, et al. 2011. Fate of early-2000s arctic warm water pulse. Bulletin of the American Meteorological Society, 92(5): 561-566
    Quadfasel D A, Sy A, Wells D, et al. 1991. Warming in the arctic. Nature, 350(6317): 385
    Rudels B, Jones E P, Anderson L G, et al. 1994. On the intermediate depth waters of the Arctic Ocean. In: The Polar Oceans and TheirRole in Shaping the Global Environment: The Nansen Centennial Volume. Geophys Monogr Ser, 85. Washington DC: AGU, 33-46
    Rudels B, Anderson L G, Jones E P. 1996. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J Geophys Res, 101(C4): 8807-8821
    Rudels B, Friedrich H J, Quadfasel D. 1999. The arctic circumpolar boundary current. Deep-Sea Research Part II, 46(6-7): 1023-1062
    Rudels B, Jones P E, Schauer U, et al. 2004. Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Research, 23(2): 181-208
    Rudels B, Schauer U, Bjork G, et al. 2013. Observations of water masses and circulation with focus on the Eurasian basin of the Arctic Ocean from the 1990s to the late 2000s. Ocean Sci, 9: 147-169
    Rudels B. 2013. Arctic Ocean circulation, processes and water masses: a description of observations and ideas with focus on the period prior to the International Polar Year 2007-2009. Progress in Oceanography, doi: 10.1016/j. pocean.2013.11.006
    Schauer U, Fahrbach E, Østerhus S, et al. 2004. Arctic warming through the Fram Strait: oceanic heat transport from 3 years of measurements. J Geophys Res, 109: C06026
    Schauer U, Beszczynska-Moller A, Walczowski W, et al. 2008. Variation of measured heat flow through the Fram Strait between 1997 and 2006. In: Dickson R R, Meincke J, Rhines P, eds. Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate.
    Dordrecht: Springer, 65-85
    Skagseth O, Furevik T, Ingvaldsen R B, et al. 2008. Volume and heat transports to the Arctic Ocean via the Norwegian and Barents seas. In: Dickson R R, Meincke J, Rhines P, eds. Arctic-Subarctic Ocean Fluxes: defining the role of the Northern Seas in climate. Dordrecht: Springer, 45-64
    Smedsrud L H, Ingvaldsen R, Nilsen J E, et al. 2010. Heat in the Barents Sea: transport, storage, and surface fluxes. Ocean Science, 6: 219-234
    Smith R, McWilliams J C. 2003. Anisotropic horizontal viscosity for ocean models. Ocean Modelling, 5: 129-156
    Steele M, Boyd T. 1998. Retreat of the cold halocline layer in the Arctic Ocean. J Geophys Res, 103(C5): 10419-10435
    Steele M, Morley R, Ermold W. 2001. PHC: a global ocean hydrography with a high quality Arctic Ocean. J Climate, 14: 2079-2087
    Wang Z, Holloway G, Hannah C. 2011. Effects of parameterized eddy stress on volume, heat, and freshwater transports through Fram Strait. J Geophys Res, 116: C00d09
    Woodgate R, Aagaard K, Muench R D, et al. 2001. The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: water mass properties, transports and transformations from moored instruments. Deep-Sea Research I, 48(8): 1757-1792
    Woodgate R A, Aagaard K, Swift J H, et al. 2007. Atlantic water circulation over the Mendeleyev ridge and Chukchi borderland from thermohaline intrusions and water mass properties. J Geophys Res, 112: C02005
    Yang J. 2005. The arctic and subarctic ocean flux of potential vorticity and the Arctic Ocean circulation. J Phys Oceanogr, 35(12): 2387-2407
    Zhong Wenli, Zhao Jinping. 2014. Deepening of the Atlantic Water Core in the Canada Basin in 2003-11. J Phys Oceanogr, 44(9): 2353-2369
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4036) PDF downloads(4740) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint