KANG Xuming, LIU Sumei, ZHANG Guoling. Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea[J]. Acta Oceanologica Sinica, 2014, 33(9): 100-108. doi: 10.1007/s13131-014-0499-1
Citation: KANG Xuming, LIU Sumei, ZHANG Guoling. Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea[J]. Acta Oceanologica Sinica, 2014, 33(9): 100-108. doi: 10.1007/s13131-014-0499-1

Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea

doi: 10.1007/s13131-014-0499-1
  • Received Date: 2013-02-28
  • Rev Recd Date: 2013-09-13
  • Cold diffusion methods are used to separate and quantify the three reduced inorganic sulfur species into acid volatile sulfide (AVS), pyrite-S and element sulfur (ES) in the sediments of the Yellow and East China Seas. The results show that up to 25.02 μmol/g of AVS, 113.1 μmol/g of pyrite-S and 44.4 μmol/g of ES are observed in the sediments of the Yellow Sea and East China Sea. Pyrite-S is the predominant sulfide mineral in the sediments, while the concentration of AVS is quite low at most stations in the study area. The amounts and reactivity of organic matter are the primary limited factor for the sulfide formation, while an iron limitation and a sulfate limitation are not observed in the sediments of the Yellow Sea and East China Sea. The irregular profiles of the three reduced inorganic sulfur species also reflected the comprehensive influence of sediment composition and sedimentation rates.
  • loading
  • Barillé-Boyer A L, Barillé L, Massé H, et al. 2003. Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems. Estuarine, Coastal and Shelf Science, 58: 147-153
    Beardsley R, Limeburner R, Yu H, et al. 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 4: 57-76
    Berner R A. 1980. Early Diagenesis a Theoretical Approach. Chichester, West Sussex: Princeton University Press, 1-245
    Berner R A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. American Journal of Science, 282: 451-473
    Berner R A. 1984. Sediment pyrite formation: an update. Geochimica et Cosmochimica Acta, 48: 605-615
    Burton E D, Phillips I R, Hawker D W. 2005. Reactive sulfide relationships with trace metal extractability in sediments from Southern Moreton Bay, Australia. Marine Pollution Bulletin, 50: 589-608
    Burton E D, Richard T B, Sullivan L A. 2006. Element sulfur in drain sediments associated with acid sulfate soils. Applied Geochemistry, 21: 1240-1247
    Burton E D, Sullivan L A, Bush R T, et al. 2008. A simple and inexpensive chromium reducible sulfur method for acid volatile sulfate soils. Applied Geochemistry, 23: 2759-2766
    Cai Weijun, Sayles F L. 1996. Oxygen penetration depths and fluxes in marine sediments. Marine Chemistry, 52: 123-131
    Canfield D E, Raiswell R. 1991. Pyrite formation and fossil preservation. In: Allison P A, Briggs D E, eds. Taphonomy: Releasing the Data Locked in the Fossil Record, Topics in Geobiology. New York: Plenum Press, 337-387
    Canfield D E, Raiswell R, Bottrell S. 1992. The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292: 659-683
    Canfield D E, Thamdrup B. 1996. Fate of elemental sulfur in an intertidal sediment. FEMS Microbiology Ecology, 19: 95-103
    Chanton J P, Martens C S. 1987. Biogeochemical cycling in an organic-rich coastal marine basin: 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochimica et Cosmochimica Acta, 51: 1187-1199
    Cui Maochang, Hu Dunxin, Mo Jun. 2004. Seasonality and causes of the Yellow Sea Warm Current. Chinese Journal of Oceanology and Limnology, 22(3): 265-270
    Duan Weimin, Chen Lirong. 1993. The history of the pyrite formation in the process of early diagenesis in the Yellow Sea and East China Sea. Science in China: Series B (in Chinese), 23(5): 545-552
    Fu Mingzhu, Wang Zongling, Li Yan, et al. 2009. Phytoplankton biomass size structure and its regulation in the southern Yellow Sea (China): seasonal variability. Continental Shelf Research, 29: 2178-2194
    Gagnon C, Mucci A, Pelletier É. 1995. Anamalous accumulations of acid volatile sulphides (AVS) in a coastal marine sediment, Saguenay Fjord, Canada. Geochimica et Cosmochimica Acta, 59(13): 2663-2675
    George W L III. 2005. Acid volative sulfide-a comment. Marine Chemistry, 97: 198-205
    Henneke E, Luther III G W, De Lange G J, et al. 1997. Sulphur speciation in anoxic hypersaline sediments from the Eastern Mediterranean Sea. Geochimica et Cosmochimica Acta, 61(2): 307-321
    Holmkvist L, Jr. A K, Vogt C, et al. 2011. Sulfate reduction below the sulfate methane transition in Black Sea sediments. Deep Sea Research: I, 58: 493-504
    Hsieh Y P, Chung S W, Tsau Y J, et al. 2002. Analysis of sulfides in the presence of ferric mineral by diffusion methods. Chemical Geology, 182: 195-201
    Hsieh Y P, Yang C H. 1989. Diffusion methods for the determination of reduced inorganic sulfur species in sediments. Limnology and Oceanography, 34(6): 1126-1130
    Hu Lei, Liu Sumei, Ren Jingling, et al. 2009. Study on distribution of acid volatile in sediments of coastal zone in East China Sea. Marine Environmental Science (in Chinese), 28(5): 482-486
    Hu Limin, Shi Xuefa, Guo Zhigang, et al. 2013. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing. Marine Geology, 335: 52-63
    Huang K M, Lin S. 1995. The carbon sulfide iron relationship and sulfate reduction rate in the East China Sea continental shelf sediments. Geochemical Journal, 29: 301-315
    Jensen M M, Petersen J, Dalsgaard T, et al. 2009. Pathways, rates, and regulation of N2 production in the chemocline of an anoxic basin, Mariager Fjord, Denmark. Marine Chemistry, 113: 102-113
    Jiang Zhihua, Ma Qimin, Wang Xiulin, et al. 2005. Study on the AVS in surface sediment in the north area of the Bohai Bay. Marine Environmental Science (in Chinese), 24(3): 6-8
    Jørgensen B B. 1982. Mineralization of organic matter in the sea bed the role of sulfate reduction. Nature, 296: 643-645
    Jørgensen B B, Kasten S. 2006. Sulfur cycling and methane oxidation. Marine Geochemistry. Berlin: Springer-Verlag, 271-309
    Jørgensen B B, Parkes R J. 2010. Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark). Limnology and Oceanography, 55(3): 1338-1352
    King G M. 1985. Short-term endproduts of sulfate reduction in a salt marsh: formation of acid volatile sulfides, element sulfur, and pyrite. Geochimica et Cosmochimica Acta, 49: 1561-1566
    Lallier-Vergèsa E, Bertranda P, Desprairiesb A. 1993. Organic matter composition and sulfate reduction intensity in Oman margin sediments. Marine Geology, 112(1-4): 57-69
    Lange H J D, Griethuysen C V, Koelmans A A. 2008. Sampling method storage and pretreatment of sediment affect AVS concentrations with consequences for bio assay responses. Environmental Pollution, 151: 243-251
    Li Jun, Hu Bangqi, Dou Yanguang, et al. 2012. Modern sedimentation rate, budget and supply of the muddy deposits in the East China Sea. Geological Review (in Chinese), 58(4): 745-756
    Lin S, Huang K M, Chen S K. 2000. Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments. Continental Shelf Research, 20: 619-635
    Lin S, Huang K M, Chen S K. 2002. Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment. Deep-Sea Research: Part I, 49: 1837-1852
    Middelburg J J. 1991. Organic carbon, sulphur, and iron in recent semi-euxinic sediments of KauBay, Indonesia. Geochimica et Cosmochimica Acta, 55: 815-828
    Milliman J D, Meade R H. 1983. World-wide delivery of river sediment to the oceans. Journal of Geology, 91(1): 1-21
    Morse J W. 1994. Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability. Marine Chemistry, 46: 1-6
    Morse J W, Cornwell J C. 1987. Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Marine Chemistry, 22: 55-69 Morse J W, Rickard D. 2004. Chemical dynamics of sedimentary acid volatile sulfide. Environmental Science and Technology, 38: 131A-136A
    Mustafa Y, Konovalov S K, Moore T S, et al. 2010. Sulfur speciation in the upper Black Sea sediments. Chemical Geology, 269: 364-375
    Nedwell D B, Abram J W. 1978. Bacterial sulphate reduction in relation to sulphur geochemistry in two contrasting areas of saltmarsh sediment. Estuarine and Coastal Marine Science, 6(4): 341-351
    Panutrakul S, Monteny F, Baeyens W. 2001. Seasonal variations in sediment sulfur cycling in the Ballastplaat mudflat, Belgium. Estuaries, 24(2): 257-265
    Pu Xiaoqiang, Li Fangcheng, Zhong Shaojun, et al. 2008. Acid volatile sulfides in sediments of South Yellow Sea. Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on. IEEE, 1058-1061. Pu Xiaoqiang, Zhong Shaojun, Liu Fei, et al. 2009. Geochemical characters of acid volatile sulfide and reactive metals in the estuary sediments in the Licun Estuary of the Jiaozhou Bay. Marine Science Bulletin (in Chinese), 28(3): 37-44
    Qin Yunshan, Zhao Yiyang, Chen Lirong, et al. 1989. Geology of the Yellow Sea. Beijing: China Ocean Press, 289 Raiswell R, Canfield E. 1998. Source of iron for pyrite formation in marine sediments. American Journal of Science, 298: 219-245
    Rickard D, Morse J W. 2005. Acid volatile sulfide (AVS). Marine Chemistry, 97: 141-197
    Roden E E, Tuttle J H. 1993. Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments. Marine Ecology Progress Series, 93: 101-118
    Santisteban J I, Mediavilla R, López-Pamo E, et al. 2004. Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Joural of Paleolimnology, 32: 287-299
    Thullner M, Andrew W D, Regnier P. 2009. Global-scale quantification of mineralization pathways in marine sediments: a reaction-transport modeling approach. Geochemistry Geophysics Geosystems, 10: 1-24
    Wang Xuchen, Sun Mingyi, Li Anchun. 2008. Contrasting chemical and isotopic compositions of organic matter in Changjiang (Yangtze River) estuarine and East China Sea shelf sediments. Journal of Oceanography, 64: 311-321
    Wei Zhongqing, Liu Congqiang, Liang Xiaobing, et al. 2005. Degradation of organic matter in the sediments of Hongfeng Reservoir. Chinese Science Bulletin, 50: 2377-2380
    Westrich J T, Berner R A. 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnology and Oceanography, 29(2): 236-249
    Zhang Jing, Liu Sumei, Ren Jingling, et al. 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea shelf. Progress in Oceanography, 74: 449-478
    Zhang Xiangshang, Zhang Longjun. 2007. Acid volatile sulfide and simultaneously extracted metals in tidal flat sediments of Jiaozhou Bay, China. Journal of Ocean University of China, 6(2): 137-142
    Zhu Maoxu, Hao Xiaochen, Shi Xiaoning, et al. 2012. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf. Applied Geochemistry, 27: 892-905
    Zhu Zhuoyi, Zhang Jing, Wu Ying, et al. 2011. Hypoxia off the Changjiang (Yangtze River) Estuary: oxygen depletion and organic matter decomposition. Marine Chemistry, 125: 108-116
    Zimmerman A R, Canuel E A. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry, 69: 117-137
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1420) PDF downloads(1241) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint