Response of harmful dinoflagellate distribution in the China Sea to global climate change

Changyou Wang Yuxing Tang Bernd Krock Yiwen Xu Zhuhua Luo Zhaohe Luo

Changyou Wang, Yuxing Tang, Bernd Krock, Yiwen Xu, Zhuhua Luo, Zhaohe Luo. Response of harmful dinoflagellate distribution in the China Sea to global climate change[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2451-3
Citation: Changyou Wang, Yuxing Tang, Bernd Krock, Yiwen Xu, Zhuhua Luo, Zhaohe Luo. Response of harmful dinoflagellate distribution in the China Sea to global climate change[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2451-3

doi: 10.1007/s13131-024-2451-3

Response of harmful dinoflagellate distribution in the China Sea to global climate change

Funds: The National Key Research and Development Program of China under contract Nos 2019YFE0124700 and 2022YFC3106002.
More Information
    Corresponding author: Changyou Wang, Email: chywang@nuist.edu.cn; Zhaohe Luo, Email: luozhaohe@tio.org.cn
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The average value of cloglog of 21 dinoflagellates in the China Sea and adjacent waters currently (left), under RCP2.6 (middle up) and RCP8.5 (middle down) in 2050, and under RCP2.6 (right up) and RCP8.5 (right down) in 2100 (Number symbol ①: Hainan Island; ②: Taiwan Island; ③: Shandong Peninsula; ④: Changshan Archipelago; ⑤: Zhimao Bay; ⑥: Bohai Bay; ⑦: Laizhou Bay; ⑧: Jiaozhou Bay; ⑨: Beibu Gulf; ⑩: Bohai Sea) (Color bar, Blue: unsuitable area; Baby blue: low suitable area; Green: moderate suitable area; Yellow: high suitable area; Orange: high suitable area with a presence probability of equal to1).

    Table  1.   Number of distribution spots of 21 dinoflagellates in global oceans and the China Sea and adjacent waters

    Species Spots in global
    oceans
    Spots in the China Sea and adjacent
    waters (2° –4° N, 103° –132° E)
    1 Akashiwo sanguinea (K.Hirasaka) Gert Hansen & Moestrup 7 751 201
    2 Alexandrium minutum Halim 4 308 4
    3 Alexandrium ostenfeldii (Paulsen) Balech & Tangen 1 265 1
    4 Azadinium poporum Tillmann & Elbrächter 96 27
    5 Azadinium spinosum Elbrächter & Tillmann 274 0
    6 Coolia monotis Meunier 211 0
    7 Dinophysis acuminata Claparède & Lachmann 32 775 27
    8 Gambierdiscus toxicus R.Adachi & Y.Fukuyo 11 0
    9 Gonyaulax spinifera (Claparède & Lachmann) Diesing 8 635 15
    10 Gonyaulax verior Sournia 1 167 3
    11 Gymnodinium catenatum H.W.Graham 1 030 8
    12 Karenia mikimotoi (Miyake & Kominami ex Oda) Gert Hansen & Moestrup 7 285 280
    13 Karlodinium veneficum (D.Ballantine) J.Larsen 5 685 4
    14 Lingulodinium polyedra (F.Stein) J.D.Dodge 9 136 5
    15 Margalefidinium polykrikoides (Margalef) F.Gómez, Richlen & D.M.Anderson 86 2
    16 Noctiluca scintillans (Macartney) Kofoid & Swezy 25 959 1 098
    17 Ostreopsis ovata Y.Fukuyo 30 5
    18 Polykrikos hartmannii W.M.Zimmermann 262 2
    19 Prorocentrum lima (Ehrenberg) F.Stein 2 538 152
    20 Protoceratium reticulatum (Claparède & Lachmann) Bütschli 5 886 30
    21 Pyrodinium bahamense var. compressum (Böhm) Steidinger, Tester & F.J.R.Taylor 71 40
    Note: As some of the collected data detailing harmful dinoflagellate distribution spots were not readily available, this portion of the data was not used to establish a database of harmful dinoflagellate distribution spots. As the database of harmful dinoflagellate distribution areas did not include the appearance time, all collected data regarding harmful dinoflagellate distribution spots were applied when establishing the database of harmful dinoflagellate distribution areas. This resulted in some harmful dinoflagellate species possessing low times and sparse domain frequencies, and this is inconsistent with the data in Tables 1 and 2.
    下载: 导出CSV

    Table  2.   Number of distribution areas of 21 dinoflagellates in global oceans and the China Sea and adjacent waters

    SpeciesDistribution areas in
    global oceans
    Distribution areas in the China Sea and adjacent
    waters (2°–4° N, 103°–132° E)
    1Akashiwo sanguinea38925
    2Alexandrium minutum1365
    3Alexandrium ostenfeldii1491
    4Azadinium poporum606
    5Azadinium spinosum760
    6Coolia monotis522
    7Dinophysis acuminata1 33715
    8Gambierdiscus toxicus80
    9Gonyaulax spinifera1 1247
    10Gonyaulax verior1126
    11Gymnodinium catenatum11117
    12Karenia mikimotoi14818
    13Karlodinium veneficum1846
    14Lingulodinium polyedra3604
    15Margalefidinium polykrikoides6723
    16Noctiluca scintillans2 71676
    17Ostreopsis ovata665
    18Polykrikos hartmannii4412
    19Prorocentrum lima31412
    20Protoceratium reticulatum46714
    21Pyrodinium bahamense var. compressum7219
    下载: 导出CSV

    Table  3.   Selected environmental variables for the MaxEnt model of dinoflagellate distribution


    Species Dominant environmental variable
    Common Current
    velocity
    Ice
    thickness
    Nitrate Salinity Temperature Primary
    productivity 1
    Primary
    productivity 2
    1 Akashiwo sanguinea CV.Min
    Depth.Mean
    Distance.Mean
    DO.Range
    Ice.Min
    N.Range
    S.Range
    T.Range
    CV.Range Ice.Lt.max N.Lt.max S.Min T.Mean Pr.Max Pr.Lt.min
    2 Alexandrium minutum CV.Range Ice.Max N.Lt.max S.Min T.Lt.min Pr.Range Pr.Lt.min
    3 Alexandrium ostenfeldii CV.Range Ice.Max N.Mean S.Min T.Mean Pr.Range Pr.Min
    4 Azadinium poporum CV.Mean Ice.Max N.Lt.max S.Lt.min T.Min Pr.Range Pr.Lt.min
    5 Azadinium spinosum CV.Lt.max Ice.Max N.Lt.max S.Min T.Mean Pr.Range Pr.Lt.min
    6 Coolia monotis CV.Mean Ice.Max N.Lt.min S.Lt.min' T.Min Pr.Range Pr.Lt.min
    7 Dinophysis acuminata CV.Max Ice.Range N.Mean S.Max T.Mean Pr.Range Pr.Lt.min
    8 Gambierdiscus toxicus CV.Max Ice.Max N.Min S.Min T.Min Pr.Lt.max Pr.Lt.min
    9 Gonyaulax spinifera CV.Lt.max Ice.Range N.Lt.min S.Min' T.Max Pr.Range Pr.Lt.min
    10 Gonyaulax verior CV.Range Ice.Lt.max N.Lt.min S.Lt.max T.Max Pr.Max Pr.Lt.min
    11 Gymnodinium catenatum CV.Lt.max Ice.Lt.max N.Mean S.Min T.Lt.min Pr.Range Pr.Min
    12 Karenia mikimotoi CV.Lt.max Ice.Max N.Lt.min S.Mean T.Mean Pr.Lt.max Pr.Lt.min
    13 Karlodinium veneficum CV.Lt.max Ice.Range N.Lt.min S.Max T.Max Pr.Lt.max Pr.Min
    14 Lingulodinium polyedra CV.Lt.max Ice.Lt.max N.Max S.Min T.Mean Pr.Max Pr.Min
    15 Margalefidinium polykrikoides CV.Range Ice.Lt.max N.Mean S.Lt.min T.Max Pr.Max Pr.Min
    16 Noctiluca scintillans CV.Range Ice.Max N.Lt.min S.Min T.Lt.min Pr.Max Pr.Lt.min
    17 Ostreopsis ovata CV.Lt.max Ice.Max N.Lt.max S.Lt.min T.Mean Pr.Range Pr.Min
    18 Polykrikos hartmannii CV.Mean Ice.Lt.max N.Mean S.Min T.Lt.min Pr.Range Pr.Lt.min
    19 Prorocentrum lima CV.Lt.max Ice.Lt.max N.Lt.max S.Lt.min T.Lt.min Pr.Range Pr.Lt.min
    20 Protoceratium reticulatum CV.Lt.max Ice.Range N.Lt.min S.Lt.min T.Mean Pr.Max Pr.Min
    21 Pyrodinium bahamense var. compressum CV.Lt.max Ice.Max N.Min S.Min T.Min Pr.Lt.max Pr.Lt.min
    Note: CV represents current velocity; Ice represents ice thickness; DO represents dissolved oxygen; N represents nitrate; S represents salinity; T represents temperature; Pr represents primary productivity.
    下载: 导出CSV

    Table  4.   Number of changes in the suitable habitat for 21 typical harmful dinoflagellates

    Year Scenario Number of dinoflagellates
    Low suitable area Moderate suitable area High suitable area
    N/km E/km S/% N/km E/km S/% N/km E/km S/%
    2050 RCP2.6 16 3 2 16 6 4 17 6 6
    RCP8.5 17 4 2 16 4 3 17 6 4
    2100 RCP2.6 15 5 3 16 8 4 18 7 4
    RCP8.5 17 2 2 16 4 2 16 2 4
    Note: N, moves northward; E, moves eastward; S, size increases by.
    下载: 导出CSV

    Table  5.   Changes in the habitat of 21 typical harmful dinoflagellates

    Species HSA at
    present/
    km2
    RCP2.6 RCP8.5
    2050 2100 2050 2100
    N/km E/km S/% N/km E/km S/% N/km E/km S/% N/km E/km S/%
    1 Akashiwo sanguinea 200 209.6 245.9 72.3 –28.6 231.2 68.8 –26.5 323.1 54.6 –29.8 762.9 –199.2 –63.4
    2 Alexandrium minutum 67 571.9 30.7 –6.7 13.4 30.9 –4.7 9.4 59.5 –21.8 7.0 166.9 –49.4 25.9
    3 Alexandrium ostenfeldii 216 556.8 –2.1 17.2 13.6 6.6 14.7 7.3 22.8 10.1 3.3 145.0 –24.5 12.1
    4 Azadinium poporum 41 364.8 4.6 –13.2 –6.6 30.5 –16.5 –8.0 7.6 –18.5 –14.8 34.6 –41.7 –36.8
    5 Azadinium spinosum 619 102.0 –34.2 –17.0 8.5 –33.7 –5.1 3.8 –20.4 –20.8 11.3 –42.3 –46.7 16.9
    6 Coolia monotis 69 597.8 174.1 24.7 0.1 159.8 11.4 –8.2 173.2 19.1 0.3 427.2 72.0 24.5
    7 Dinophysis acuminata 914 189.6 147.7 –12.4 –2.9 131.0 –6.7 –4.7 170.0 –17.1 –4.1 302.4 –82.9 –13.9
    8 Gambierdiscus toxicus 1 723 326.5 61.3 –47.5 –31.6 52.2 –22.2 –25.6 28.8 –81.6 –41.8 14.4 –89.2 –47.1
    9 Gonyaulax spinifera 584 764.3 433.0 –51.3 –47.4 375.3 –55.8 –37.3 815.9 –110.2 –64.3 1254.0 –306.5 –94.5
    10 Gonyaulax verior 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    11 Gymnodinium catenatum 189 890.6 173.1 –72.8 –24.6 138.5 –59.5 –25.4 160.2 –67.2 –22.4 385.4 –159.0 –46.5
    12 Karenia mikimotoi 139 071.7 102.3 –66.3 –23.0 74.3 –55.0 –22.6 128.9 –70.9 –25.7 325.0 –117.4 –59.8
    13 Karlodinium veneficum 370 537.3 130.4 –8.9 –14.0 99.6 –7.9 –14.7 217.2 –1.1 –22.8 371.0 –101.8 –28.7
    14 Lingulodinium polyedra 808 766.7 486.3 –29.1 –30.2 457.6 –19.6 –27.2 551.7 –45.3 –34.0 750.3 –102.4 –48.4
    15 Margalefidinium polykrikoides 227 992.4 –270.1 15.0 –21.2 –195.0 6.5 –14.7 –246.6 3.5 –28.3 –410.1 –1.1 –49.3
    16 Noctiluca scintillans 1 600 532.5 182.3 32.3 –13.7 132.7 36.9 –6.7 283.1 8.7 –19.8 571.8 –86.1 –30.6
    17 Ostreopsis ovata 6 608.2 360.3 –28.9 –79.9 254.2 –31.9 –78.6 601.5 –289.9 –89.5 –100.0
    18 Polykrikos hartmannii 28 540.8 1.7 0.1 –29.9 27.6 10.8 –20.4 –13.3 19.9 –39.8 –85.9 31.5 –55.1
    19 Prorocentrum lima 738 403.0 178.5 –2.9 0.2 166.0 –8.1 –0.7 187.0 –1.4 –1.6 351.4 –36.0 –8.5
    20 Protoceratium reticulatum 581 481.4 14.9 –3.8 0.6 7.1 –1.3 0.003 35.6 –9.5 –2.2 100.8 –43.2 –13.0
    21 Pyrodinium bahamense
    var. compressum
    96 582.8 60.9 –8.7 –19.3 46.5 6.2 –13.3 92.9 –20.2 –35.9 150.6 –104.7 –59.5
    Note: HSA represents highly suitable area; N represents moving northward; E represents moving eastward; S represents size increase; RCP represents representative concentration pathway.
    下载: 导出CSV

    Table  6.   Rank of environmental function variables impacts on the distribution of species of dinoflagellates


    Species ST5/
    %
    Environmental factors rank
    1 2 3 4 5
    1 Akashiwo sanguinea 84 Distance.Mean Depth.Mean Nitrate.Lt.max Primary.
    productivity.Lt.min
    Temperature.Mean
    2 Alexandrium minutum 85 Depth.Mean Distance.Mean Primary.
    productivity.Lt.min
    Temperature.Lt.min Dissolved.oxygen.
    Range
    3 Alexandrium ostenfeldii 83 Depth.Mean Nitrate.Mean Distance.Mean Dissolved.oxygen.Range Temperature.Mean
    4 Azadinium poporum 85 Depth.Mean Primary.
    productivity.Lt.min
    Distance.Mean Nitrate.Range Temperature.Min
    5 Azadinium spinosum 79 Primary.
    productivity.Lt.min
    Depth.Mean Distance.Mean Dissolved.oxygen.Range Nitrate.Range
    6 Coolia monotis 92 Distance.Mean Depth.Mean Temperature.Range Ice.thickness.Max Primary.
    productivity.Lt.min
    7 Dinophysis acuminata 84 Distance.Mean Depth.Mean Nitrate.Mean Temperature.Mean Primary.
    productivity.Lt.min
    8 Gambierdiscus toxicus 97 Distance.Mean Nitrate.Min Temperature.Min Salinity.Range Ice.thickness.Max
    9 Gonyaulax spinifera 71 Distance.Mean Depth.Mean Dissolved.oxygen.
    Range
    Temperature.Max Primary.
    productivity.Lt.min
    10 Gonyaulax verior 87 Depth.Mean Distance.Mean Temperature.Max Primary.
    productivity.Lt.min
    Salinity.Range
    11 Gymnodinium catenatum 86 Distance.Mean Depth.Mean Temperature.Lt.min Ice.thickness.Lt.max Temperature.Range
    12 Karenia mikimotoi 88 Temperature.Mean Depth.Mean Primary.
    productivity.Lt.min
    Distance.Mean Nitrate.Lt.min
    13 Karlodinium veneficum 84 Depth.Mean Distance.Mean Salinity.Range Current.Velocity.Lt.max Dissolved.oxygen.
    Range
    14 Lingulodinium polyedra 77 Distance.Mean Temperature.Mean Primary.
    productivity.Min
    Temperature.Range Depth.Mean
    15 Margalefidinium
    polykrikoides
    84 Depth.Mean Distance.Mean Ice.thickness.Min Ice.thickness.Lt.max Salinity.Range
    16 Noctiluca scintillans 88 Distance.Mean Primary.
    productivity.Lt.min
    Temperature.Lt.min Salinity.Min Depth.Mean
    17 Ostreopsis ovata 91 Distance.Mean Temperature.Mean Ice.thickness.Max Temperature.Range Current.Velocity.
    Lt.max
    18 Polykrikos hartmannii 86 Distance.Mean Depth.Mean Temperature.Lt.min Primary.
    productivity.Range
    Temperature.Range
    19 Prorocentrum lima 87 Distance.Mean Primary.
    productivity.Lt.min
    Depth.Mean Temperature.Lt.min Primary.
    productivity.Range
    20 Protoceratium reticulatum 79 Depth.Mean Temperature.Mean Dissolved.oxygen.
    Range
    Distance.Mean Temperature.Range
    21 Pyrodinium bahamense
    var. compressum
    94 Distance.Mean Temperature.Min Current.Velocity.
    Lt.max
    Depth.Mean Temperature.Range
    Note: CV represents current velocity; Ice represents ice thickness; DO represents dissolved oxygen; N represents nitrate; S represents salinity; T represents temperature; Pr represents primary productivity; ST5 represents sum of the top five environmental variables contributing to the model’s predictive ability.
    下载: 导出CSV

    Table  7.   Importance rank of environmental factors on the distribution of dinoflagellates

    Environmental factors
    Spatial variables Ecological factor
    Distance Depth Temperature Primary productivity Nitrate Ice thickness Dissolved oxygen Salinity Current velocity
    EFR 1.8 2.1 3.2 3.3 3.4 3.8 4.0 4.2 4.0
    n 21 19 18 13 7 5 6 5 3
    Note: EFR represents importance rank of environmental factors on the distribution of dinoflagellates; n represents number of species among the 21 typical dinoflagellate species.
    下载: 导出CSV
  • Assis J, Tyberghein L, Bosch S, et al. 2018. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3): 277–284, doi: 10.1111/geb.12693
    Beaumont C D. 1981. Regression diagnostics—Identifying influential data and sources of collinearity. Journal of the Operational Research Society, 32(2): 157–158
    Bertram J, Newman E A, Dewar R C. 2019. Comparison of two maximum entropy models highlights the metabolic structure of metacommunities as a key determinant of local community assembly. Ecological Modelling, 407: 108720, doi: 10.1016/j.ecolmodel.2019.108720
    Burkholder J M, Glibert P M, Skelton H M. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae, 8(1): 77–93, doi: 10.1016/j.hal.2008.08.010
    Cai Rongshuo, Han Zhiqiang, Yang Zhengxian. 2020. Impacts and risks of changing ocean on marine ecosystems and dependent communities and related responses. Climate Change Research (in Chinese), 16(2): 182–193
    Cai Rongshuo, Tan Hongjian, Guo Haixia. 2019. Responses and compound risks of the coastal China areas to global change. Journal of Applied Oceanography (in Chinese), 38(4): 514–527
    Chen Baohong, Wang Kang, Lin Hui. 2019. Akashiwo sanguinea blooms in Chinese waters in 1998–2017. Marine Pollution Bulletin, 149: 110652, doi: 10.1016/j.marpolbul.2019.110652
    China National Marine Science Data Center. 2021. Further analysis of global monthly average data (in Chinese). http://mds.nmdis.org.cn/[2019-08-06/2021-05-16]
    Elith J, Phillips S J, Hastie T, et al. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1): 43–57, doi: 10.1111/j.1472-4642.2010.00725.x
    Gu Haifeng. 2011. Morphology, phylogenetic position, and ecophysiology of Alexandrium ostenfeldii (Dinophyceae) from the Bohai Sea, China. Journal of Systematics and Evolution, 49(6): 606–616, doi: 10.1111/j.1759-6831.2011.00160.x
    Gu Haifeng, Liu Tingting, Vale P, et al. 2013. Morphology, phylogeny and toxin profiles of Gymnodinium inusitatum sp. nov. , Gymnodinium catenatum and Gymnodinium microreticulatum (Dinophyceae) from the Yellow Sea, China. Harmful Algae, 28: 97-107
    Gu Haifeng, Wu Yiran, Lü Songhui, et al. 2022. Emerging harmful algal bloom species over the last four decades in China. Harmful Algae, 111: 102059, doi: 10.1016/j.hal.2021.102059
    Guo Hao, Ding Dewei, Lin Feng’ao, et al. 2015. Characteristics and patterns of red tide in China coastal waters during the last 20a. Advances in Marine Science (in Chinese), 33(4): 547–558
    Guo Hao, Lin Feng’ao, Liu Yongjian, et al. 2014. High-incidence HABs causative species in China coastal waters and the forewarning method based on the HABs risk index. Marine Environmental Science (in Chinese), 33(1): 94–98
    IPCC. 2013. Summary for policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 3-29
    IPCC. 2019. Summary for policymakers. In: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 3-34
    IPCC. 2021. Summary for policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ito the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 3-32
    Kariya T, Kurata H, Hayashi T. 2024. A modelling framework for regression with collinearity. Journal of Statistical Planning and Inference, 228: 95–115, doi: 10.1016/j.jspi.2023.07.001
    Li Xueding. 2021. Occurrence characteristics of the red tide in Fujian coastal waters during the last two decades. Marine Environmental Science (in Chinese), 40(4): 601–610
    Li Jiangyue, Chang Hong, Liu Tong, et al. 2019. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agricultural and Forest Meteorology, 275: 243–254, doi: 10.1016/j.agrformet.2019.05.027
    Lin Senjie, Ji, Nanjing, Luo Hao. 2019. Recent progress in marine harmful algal bloom research. Oceanologia et Limnologia Sinica (in Chinese), 50(3): 495–510
    Liu Guiying, Ge Kun, Song Lun, et al. 2015. The research trend of Karenia mikimotoi. Marine Sciences (in Chinese), 39(9): 117–122
    Lü Songhui, Cen Jingyi, Wang Jianyan, et al. 2019. The research status quo, hazard, and ecological mechanisms of Karenia mikimotoi red tide in coastal waters of China. Oceanologia et Limnologia Sinica (in Chinese), 50(3): 487–494
    Melo-Merino S M, Reyes-Bonilla H, Lira-Noriega A. 2020. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling, 415: 108837, doi: 10.1016/j.ecolmodel.2019.108837
    Merow C, Smith M J, Silander J A. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography, 36(10): 1058–1069, doi: 10.1111/j.1600-0587.2013.07872.x
    Meshgi B, Majidi-Rad M, Hanafi-Bojd A A, et al. 2019. Ecological niche modeling for predicting the habitat suitability of fascioliasis based on maximum entropy model in southern Caspian Sea littoral, Iran. Acta Tropica, 198: 105079, doi: 10.1016/j.actatropica.2019.105079
    Ministry of Natural Resources of the People’s Republic of China. 1989–2022. Bulletin of China Marine Disaster (1989–2022) (in Chinese). https://www.mnr.gov.cn/sj/sjfw/hy/gbgg/zghyzhgb/index_1.html[2023-12-13/2023-04-08]
    Phillips S J, Anderson R P, Dudík M, et al. 2017. Opening the black box: An open-source release of MaxEnt. Ecography, 40(7): 887–893, doi: 10.1111/ecog.03049
    Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4): 231–259, doi: 10.1016/j.ecolmodel.2005.03.026
    Phillips S J, Dudík M. 2008. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31(2): 161–175, doi: 10.1111/j.0906-7590.2008.5203.x
    Phillips S J, Dudík M, Schapire R E. 2004. A maximum entropy approach to species distribution modeling. In: Proceedings of the Twenty-First International Conference on Machine Learning. Banff, Alberta, Canada: ACM, 83
    Qi Yuzao, Zou Jingzhong, Liang Song. 2003. Red Tide along the Coast of China (in Chinese). Beijing: Science Press, 1–2
    Shen Yongping, Wang Guoya. 2013. Key findings and assessment results of IPCC WGI Fifth Assessment Report. Journal of Glaciology and Geocryology (in Chinese), 35(5): 1068–1076
    Soofi E S. 2000. Principal information theoretic approaches. Journal of the American Statistical Association, 95(452): 1349–1353, doi: 10.1080/01621459.2000.10474346
    Tillmann U, Elbrächter M, Krock B, et al. 2009. Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. European Journal of Phycology, 44(1): 63–79, doi: 10.1080/09670260802578534
    Tyberghein L, Verbruggen H, Pauly K, et al. 2012. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography, 21(2): 272–281, doi: 10.1111/j.1466-8238.2011.00656.x
    Wang Rulin, Li Qing, Feng Chuanhong, et al. 2017. Predicting potential ecological distribution of Locusta migratoria tibetensis in China using MaxEnt ecological niche modeling. Acta Ecologica Sinica (in Chinese), 37(24): 8556–8566
    Wang Changyou, Wang Xiulin, Liang Shengkang, et al. 2010. The methods for calibrating average concentration in the domain and estimating average annual concentration of pollutants in the sea area being partially or totally different from target domains. Haiyang Xuebao (in Chinese), 32(2): 155–160
    Wang Changyou, Xu Yiwen, Gu Haifeng, et al. 2023a. Expansion risk of the toxic dinoflagellate Gymnodinium catenatum blooms in Chinese waters under climate change. Ecological Informatics, 75: 102042, doi: 10.1016/j.ecoinf.2023.102042
    Wang Changyou, Xu Yiwen, Gu Haifeng, et al. 2024. Potential geographical distribution of harmful algal blooms caused by the toxic dinoflagellate Karenia mikimotoi in the China Sea. Science of the Total Environment, 906: 167741, doi: 10.1016/j.scitotenv.2023.167741
    Wang Endong, Zhang Lianjun, Chen Hong, et al. 2023b. Collinearity-oriented sensitivity analysis for patterning energy factor significance in buildings. Journal of Building Engineering, 73: 106685, doi: 10.1016/j.jobe.2023.106685
    Wang Zhaohui, Zhang Yuning, Wang Wenting, et al. 2022. Distribution of dinoflagellate cysts in surface sediments on the Dongshan Bay, Fujian province, China. Journal of Tropical Oceanography (in Chinese), 41(4): 154–162
    Xie Pengfei, Gu Yanbin, Sui Weina, et al. 2019. Big data challenges for species distribution models in predicting potential distribution of marine species. Marine Information (in Chinese), 34(1): 51–61
    Xu Yixiao, He Xilin, Lee Wai Hin, et al. 2021. Ciguatoxin-producing dinoflagellate Gambierdiscus in the Beibu Gulf: First report of toxic Gambierdiscus in Chinese Waters. Toxins (Basel), 13(9): 643, doi: 10.3390/toxins13090643
    Yan Huyong, Feng Lei, Zhao Yufei, et al. 2020. Predicting the potential distribution of an invasive species, Erigeron canadensis L., in China with a maximum entropy model. Global Ecology and Conservation, 21: e00822
    Yu Zhiming, Chen Nansheng. 2019. Emerging trends in red tide and major research progresses. Oceanologia et Limnologia Sinica (in Chinese), 50(3): 474–486
    Zhang Qingtian. 2013. Review on the annual variation of red tides in China Sea. Environmental Monitoring in China (in Chinese), 29(5): 98–102
    Zhang Danhua, Hu Yuanman, Liu Miao. 2019. Potential distribution of Spartinal alterniflora in China coastal areas based on MaxEnt niche model. Chinese Journal of Applied Ecology (in Chinese), 30(7): 2329–2337
    Zhou Jian, Wang Wei, Wu Zhihong, et al. 2020. The basic characteristics and prevention countermeasures of red tide in Shandong coast waters. Marine Environmental Science (in Chinese), 39(4): 537–543
  • 加载中
计量
  • 文章访问数:  78
  • HTML全文浏览量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 录用日期:  2024-09-25
  • 网络出版日期:  2025-02-08

目录

    /

    返回文章
    返回