SAR-based oil spill detection and impact assessment on coastal and marine environments

Muhammad Ozair Muhammad Farooq Iqbal Irfan Mahmood Saima Naz

Muhammad Ozair, Muhammad Farooq Iqbal, Irfan Mahmood, Saima Naz. SAR-based oil spill detection and impact assessment on coastal and marine environments[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2386-8
Citation: Muhammad Ozair, Muhammad Farooq Iqbal, Irfan Mahmood, Saima Naz. SAR-based oil spill detection and impact assessment on coastal and marine environments[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2386-8

doi: 10.1007/s13131-024-2386-8

SAR-based oil spill detection and impact assessment on coastal and marine environments

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Study area map showing oil spillage incident locations.

    Figure  2.  East China Sea oil spill: a. pre-oil spill image (2017−12−27), b. post-oil spill image (2018−01−20), c. classified oil spill image (wind direction: south).

    Figure  4.  Red Sea oil spill incident: a. pre-oil spill image (2019−09−01), b. post-oil spill image (2019−10−13) with wind direction (south), c. classified oil spill image.

    Figure  5.  Mauritius oil spill: a. pre-oil spill image (2020−07−17), b. post-oil spill image (2020−08−10) with wind direction (blue arrow), c. classified image.

    Figure  8.  Wind rose diagrams for oil spill event locations: a. East China Sea, b. Balikpapan Bay, c. Red Sea, d. Mauritius, and e. Colombo.

    Figure  9.  Normalized difference vegetation index (NDVI) based assessment for oil spill impacts: time−series NDVI maps showing vegetation changes in the coastal regions affected by oil spills. Subplots a. East China Sea (2016−05−05), b. East China Sea (2017−10−09), c. East China Sea (2018−10−09), d. East China Sea (2019−10−09), e. Balikpapan Bay (2016−08−07), f. Balikpapan Bay (2017−08−31), g. Balikpapan Bay (2018−08−31), h. Balikpapan Bay (2019−08−31), i. Red Sea Jeddah (2017−03−23), j. Red Sea Jeddah (2018−03−23), k. Red Sea Jeddah (2020−03−22), l. Red Sea Jeddah (2021−03−22), m. Mauritius (2018−01−29), n. Mauritius (2019−01−29), o. Mauritius (2021−01−28), p. Mauritius (2022−01−28), q. Colombo (2019−11−17), r. Colombo (2020−11−21), s. Colombo (2021−11−21), t. Colombo (2022−11−26).

    Figure  10.  Enhanced vegetation index (EVI) based assessment for oil spill impacts: time−series evi maps showing vegetation health in the coastal regions affected by oil spills. Subplots a. East China Sea (2016−05−05), b. East China Sea (2017−10−09), c. East China Sea (2018−10−09), d. East China Sea (2019−10−09), e. Balikpapan Bay (2016−08−07), f. Balikpapan Bay (2017−08−31), g. Balikpapan Bay (2018−08−31), h. Balikpapan Bay (2019−08−31), i. Red Sea Jeddah (2017−03−23), j. Red Sea Jeddah (2018−03−23), k. Red Sea Jeddah (2020−03−22), l. Red Sea Jeddah (2021−03−22), m. Mauritius (2018−01−29), n. Mauritius (2019−01−29), o. Mauritius (2021−01−28), p. Mauritius (2022−01−28), q. Colombo (2019−11−17), r. Colombo (2020−11−21), s. Colombo (2021−11−21), t. Colombo (2022−11−26).

    Figure  11.  Leaf Chlorophyll Index (LCI) based assessment for oil spill impacts: time−series lci maps showing chlorophyll content in the vegetation of the coastal regions affected by oil spills. Subplots a. East China Sea (2016−05−05), b. East China Sea (2017−10−09), c. East China Sea (2018−10−09), d. East China Sea (2019−10−09), e. Balikpapan Bay (2016−08−07), f. Balikpapan Bay (2017−08−31), g. Balikpapan Bay (2018−08−31), h. Balikpapan Bay (2019−08−31), i. Red Sea Jeddah (2017−03−23), j. Red Sea Jeddah (2018−03−23), k. Red Sea Jeddah (2020−03−22), l. Red Sea Jeddah (2021−03−22), m. Mauritius (2018−01−29), n. Mauritius (2019−01−29), o. Mauritius (2021−01−28), p. Mauritius (2022−01−28), q. Colombo (2019−11−17), r. Colombo (2020−11−21), s. Colombo (2021−11−21), t. Colombo (2022−11−26).

    Figure  12.  Normalized difference water index (NDWI) based assessment for oil spill impacts: time−series NDWI maps highlighting changes in water presence and potential oil contamination in the coastal regions. Subplots a. East China Sea (2016−05−05), b. East China Sea (2017−10−09), c. East China Sea (2018−10−09), d. East China Sea (2019−10−09), e. Balikpapan Bay (2016−08−07), f. Balikpapan Bay (2017−08−31), g. Balikpapan Bay (2018−08−31), h. Balikpapan Bay (2019−08−31), i. Red Sea Jeddah (2017−03−23), j. Red Sea Jeddah (2018−03−23), k. Red Sea Jeddah (2020−03−22), l. Red Sea Jeddah (2021−03−22), m. Mauritius (2018−01−29), n. Mauritius (2019−01−29), o. Mauritius (2021−01−28), p. Mauritius (2022−01−28), q. Colombo (2019−11−17), r. Colombo (2020−11−21), s. Colombo (2021−11−21), t. Colombo (2022−11−26).

    Figure  13.  Air quality impact assessment of the red sea oil spill: a. temporal variation in carbon monoxide (CO) levels, b. changes in the mean concentration of nitrogen dioxide (NO2), and c. concentration of sulfur dioxide (SO2).

    Figure  14.  Air quality impact assessment of the Sri Lanka oil spill: a. temporal variation in carbon monoxide (CO) levels, b. Changes in the mean concentration of nitrogen dioxide (NO2), and c. concentration of sulfur dioxide (SO2).

    Table  1.   Sentinel-1 operational product characteristics (IW, SM, EW, Az, FR, HR, MR and Rz).

    Data modeResolution classResolution (Rz × Az)/mPixel Spacing (Rz × Az) /m)No. of Looks (Rz × Az)Swath/km
    SMFR9 × 94 × 42 × 280
    HR23 × 2310 × 106 × 6
    MR84 × 8440 × 4022 × 22
    IWHR20 × 2210 × 105 × 1250
    MR88 × 8940 × 4022 × 5
    EWHR50 × 5025 × 253 × 1400
    MR93 × 8740 × 406 × 2
    下载: 导出CSV

    Table  2.   Geographic location and oil type of spill events.

    Sr. No.LocationLatitudeLongitudeEvent datePre-acquisition datePost-acquisition dateOil spill volumeType of Oil
    1East China Sea28.634°N125.617°E6 January 201827 December 201720 January 2018111000 (mt)/
    1900 t
    ULHFCO/BO
    2Balikpapan Bay
    (Indonesia)
    01.830°N116.507°E29 March 20188 March 20181 April 2018-CO
    3Red Sea
    (Jeddah)
    20.447°N38.339°E11 October 20191 September 201913 October 2019-CO
    4Mauritius coast20.221°S57.617°E6 August 202017 July 202010 August 20204100(mt)LSF
    5Colombo
    (Sri Lanka)
    06.847°N79.271°E26 May 20213 May 20218 June 2021350(t)BO
    下载: 导出CSV

    Table  3.   Event parameters and data acquisition dates for oil spill analysis.

    Sr. No.Effected coastal regionsEvent locationBuffer size (km)Pre-acquisition datesPost-acquisition dates
    1Japan CoastEast China Sea4005 May 2016
    09 October 2017
    09 October 2018
    09 October 2019
    2Balikpapan BayBalikpapan Bay507 August 2016
    31 August 2017
    31 August 2018
    31 August 2019
    3Jeddah coastRed Sea2023 March 2017
    23 March 2018
    22 March 2020
    22 March 2021
    4Mauritius CoastMauritius Coast129 January 2018
    29 January 2019
    28 January 2021
    28 January 2022
    5Colombo CoastColombo Coast1517 November 2019
    21 November 2020
    21 November 2021
    26 November 2022
    下载: 导出CSV
  • Adamu B, Tansey K, Ogutu B. 2018. Remote sensing for detection and monitoring of vegetation affected by oil spills. International Journal of Remote Sensing, 39(11): 3628–3645, doi: 10.1080/01431161.2018.1448483
    Ajadi O A, Meyer F J, Tello M, et al. 2018. Oil spill detection in synthetic aperture radar images using Lipschitz-regularity and multiscale techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(7): 2389–2405, doi: 10.1109/JSTARS.2018.2827996
    Alaa El-Din G, Amer A A, Malsh G, et al. 2018. Study on the use of banana peels for oil spill removal. Alexandria Engineering Journal, 57(3): 2061–2068, doi: 10.1016/j.aej.2017.05.020
    Alpers W, Holt B, Zeng Kan. 2017. Oil spill detection by imaging radars: challenges and pitfalls. Remote Sensing of Environment, 201: 133–147, doi: 10.1016/j.rse.2017.09.002
    Arellano P, Tansey K, Balzter H, et al. 2015. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environmental Pollution, 205: 225–239, doi: 10.1016/j.envpol.2015.05.041
    Bhatnagar S, Gill L, Regan S, et al. 2020. Mapping vegetation communities inside wetlands using sentinel-2 imagery in Ireland. International Journal of Applied Earth Observation and Geoinformation, 88: 102083, doi: 10.1016/j.jag.2020.102083
    Brekke C, Solberg A H S. 2005. Oil spill detection by satellite remote sensing. Remote Sensing of Environment, 95(1): 1–13, doi: 10.1016/j.rse.2004.11.015
    Cantorna D, Dafonte C, Iglesias A, et al. 2019. Oil spill segmentation in SAR images using convolutional neural networks. A comparative analysis with clustering and logistic regression algorithms. Applied Soft Computing, 84: 105716, doi: 10.1016/j.asoc.2019.105716
    Cervantes-Hernández P, Celis-Hernández O, Ahumada-Sempoal M A, et al. 2024. Combined use of SAR images and numerical simulations to identify the source and trajectories of oil spills in coastal environments. Marine Pollution Bulletin, 199: 115981, doi: 10.1016/j.marpolbul.2023.115981
    Chiu C M, Huang Ching-Jer, Wu Li-Chung, et al. 2018. Forecasting of oil-spill trajectories by using SCHISM and X-band radar. Marine Pollution Bulletin, 137: 566–581, doi: 10.1016/j.marpolbul.2018.10.060
    Clevers J G P W, Gitelson A A. 2013. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on sentinel-2 and-3. International Journal of Applied Earth Observation and Geoinformation, 23: 344–351, doi: 10.1016/j.jag.2012.10.008
    Delegido J, Verrelst J, Alonso L, et al. 2011. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7): 7063–7081, doi: 10.3390/s110707063
    Drusch M, Del Bello U, Carlier S, et al. 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120: 25–36, doi: 10.1016/j.rse.2011.11.026
    Eskes H, Huijnen V, Arola A, et al. 2015. Validation of reactive gases and aerosols in the MACC global analysis and forecast system. Geoscientific Model Development, 8(11): 3523–3543, doi: 10.5194/gmd-8-3523-2015
    Evans D D, Mulholland G W, Baum H R, et al. 2001. In situ burning of oil spills. Journal of Research of the National Institute of Standards and Technology, 106(1): 231–278, doi: 10.6028/jres.106.009
    Ewing B R, Hawkins T R, Wiedmann T O, et al. 2012. Integrating ecological and water footprint accounting in a multi-regional input-output framework. Ecological Indicators, 23: 1–8, doi: 10.1016/j.ecolind.2012.02.025
    Fan Jianchao, Zhang Fengshou, Zhao Dongzhi, et al. 2015. Oil spill monitoring based on SAR remote sensing imagery. Aquatic Procedia, 3: 112–118, doi: 10.1016/j.aqpro.2015.02.234
    Fingas M, Brown C. 2014. Review of oil spill remote sensing. Marine Pollution Bulletin, 83(1): 9–23, doi: 10.1016/j.marpolbul.2014.03.059
    Fingas M, Brown C E. 2018. A review of oil spill remote sensing. Sensors, 18(1): 91
    Fiscella B, Giancaspro A, Nirchio F, et al. 2000. Oil spill detection using marine SAR images. International Journal of Remote Sensing, 21(18): 3561–3566, doi: 10.1080/014311600750037589
    Frampton W J, Dash J, Watmough G, et al. 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82: 83–92, doi: 10.1016/j.isprsjprs.2013.04.007
    Freedman B. 1995. The ecological effects of pollution, disturbance, and other stresses. In: Freedman B, ed. Environmental Ecology. 2nd ed. Amsterdam: Elsevier, 1–10
    Ganjirad M, Bagheri H. 2024. Google Earth Engine-based mapping of land use and land cover for weather forecast models using Landsat 8 imagery. Ecological Informatics, 80: 102498, doi: 10.1016/j.ecoinf.2024.102498
    Guanter L, Aben I, Tol P, et al. 2015. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmospheric Measurement Techniques, 8(3): 1337–1352, doi: 10.5194/amt-8-1337-2015
    Huete A, Didan K, Miura T, et al. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2): 195–213, doi: 10.1016/S0034-4257(02)00096-2
    Jana A, Maiti S, Biswas A. 2016. Seasonal change monitoring and mapping of coastal vegetation types along Midnapur-Balasore coast, bay of Bengal using multi-temporal Landsat data. Modeling Earth Systems and Environment, 2(1): 7, doi: 10.1007/s40808-015-0062-x
    Khanna S, Santos M J, Ustin S L, et al. 2013. Detection of salt marsh vegetation stress and recovery after the Deepwater horizon oil spill in Barataria Bay, Gulf of Mexico using AVIRIS data. PLoS One, 8(11): e78989, doi: 10.1371/journal.pone.0078989
    Lee J S, Wen J H, Ainsworth T L, et al. 2008. Improved sigma filter for speckle filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 47: 202–213
    Lehr W J, Fraga R J, Belen M S, et al. 1984. A new technique to estimate initial spill size using a modified Fay-type spreading formula. Marine Pollution Bulletin, 15(9): 326–329, doi: 10.1016/0025-326X(84)90488-0
    Li Lin, Ustin S L, Lay M. 2005. Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico. Remote Sensing of Environment, 94(1): 1–16, doi: 10.1016/j.rse.2004.08.010
    Lin Qianxin, Mendelssohn I A. 2012. Impacts and recovery of the Deepwater horizon oil spill on vegetation structure and function of coastal salt marshes in the northern gulf of Mexico. Environmental Science & Technology, 46(7): 3737–3743
    Lu Jiang. 2003. Marine oil spill detection, statistics and mapping with ERS SAR imagery in south-east Asia. International Journal of Remote Sensing, 24(15): 3013–3032, doi: 10.1080/01431160110076216
    Mahindapala W K M. 2020. Oil spill detection in the east of Sri Lanka with sentinel-1 SAR. E3S Web of Conferences, 211: 02013, doi: 10.1051/e3sconf/202021102013
    Malenovský Z, Rott H, Cihlar J, et al. 2012. Sentinels for science: potential of sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sensing of Environment, 120: 91–101, doi: 10.1016/j.rse.2011.09.026
    Marghany M, Van Genderen J. 2014. Entropy algorithm for automatic detection of oil spill from radarsat-2 SAR data. IOP Conference Series: Earth and Environmental Science, 18: 012051, doi: 10.1088/1755-1315/18/1/012051
    Mdakane L W, Kleynhans W. 2022. Feature selection and classification of oil spill from vessels using sentinel-1 wide–swath synthetic aperture radar data. IEEE Geoscience and Remote Sensing Letters, 19: 4002505
    Mera D, Cotos J M, Varela-Pet J, et al. 2012. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula. Marine Pollution Bulletin, 64(10): 2090–2096, doi: 10.1016/j.marpolbul.2012.07.018
    Migliaccio M, Nunziata F, Buono A. 2015. SAR polarimetry for sea oil slick observation. International Journal of Remote Sensing, 36(12): 3243–3273, doi: 10.1080/01431161.2015.1057301
    Misra A, Balaji R. 2017. Simple approaches to oil spill detection using sentinel application platform (SNAP)-ocean application tools and texture analysis: a comparative study. Journal of the Indian Society of Remote Sensing, 45(6): 1065–1075, doi: 10.1007/s12524-016-0658-2
    Naz S, Iqbal M F, Mahmood I, et al. 2021. Marine oil spill detection using synthetic aperture radar over Indian Ocean. Marine Pollution Bulletin, 162: 111921, doi: 10.1016/j.marpolbul.2020.111921
    Noomen M F, Skidmore A K. 2009. The effects of high soil CO2 concentrations on leaf reflectance of maize plants. International Journal of Remote Sensing, 30(2): 481–497, doi: 10.1080/01431160802339431
    Nukapothula S, Wu Jie, Chen Chuqun, et al. 2021. Potential impact of the extensive oil spill on primary productivity in the Red Sea waters. Continental Shelf Research, 222: 104437, doi: 10.1016/j.csr.2021.104437
    Nur A A, Mandang I, Mubarrok S, et al. 2018. The changes of water mass characteristics using 3-dimensional Regional Ocean Modeling System (ROMS) in Balikpapan bay, Indonesia. IOP Conference Series: Earth and Environmental Science, 162: 012006, doi: 10.1088/1755-1315/162/1/012006
    Ozigis M S, Kaduk J D, Jarvis C H, et al. 2020. Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods. Environmental Pollution, 256: 113360, doi: 10.1016/j.envpol.2019.113360
    Peng Wenfu, Kuang Tingting, Tao Shuai. 2019. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. Journal of Cleaner Production, 233: 353–367, doi: 10.1016/j.jclepro.2019.05.355
    Peng Wenfu, Wang Guangjie, Zhou Jieming, et al. 2016. Dynamic monitoring of fractional vegetation cover along Minjiang River from Wenchuan County to Dujiangyan City using multi-temporal landsat 5 and 8 images. Acta Ecologica Sinica, 36(7): 1975–1988
    Peterson G D, Carpenter S R, Brock W A. 2003a. Uncertainty and the management of multistate ecosystems: an apparently rational route to collapse. Ecology, 84(6): 1403–1411, doi: 10.1890/0012-9658(2003)084[1403:UATMOM]2.0.CO;2
    Peterson C H, Rice S D, Short J W, et al. 2003b. Long-term ecosystem response to the Exxon Valdez oil spill. Science, 302(5653): 2082–2086, doi: 10.1126/science.1084282
    Prastyani R, Basith A. 2018. Utilisation of sentinel-1 SAR imagery for oil spill mapping: a case study of Balikpapan Bay oil spill. Journal of Geospatial Information Science and Engineering, 1(1): 22–26
    Pu Ruiliang, Gong Peng, Yu Qian. 2008. Comparative analysis of EO-1 ALI and Hyperion, and Landsat ETM+ data for mapping forest crown closure and leaf area index. Sensors, 8(6): 3744–3766, doi: 10.3390/s8063744
    Rajendran S, Vethamony P, Sadooni F N, et al. 2021. Detection of wakashio oil spill off Mauritius using sentinel-1 and 2 data: capability of sensors, image transformation methods and mapping. Environmental Pollution, 274: 116618, doi: 10.1016/j.envpol.2021.116618
    Schlemmer M, Gitelson A, Schepers J, et al. 2013. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. International Journal of Applied Earth Observation and Geoinformation, 25: 47–54, doi: 10.1016/j.jag.2013.04.003
    Shu Y, Li J, Yousif H, et al. 2010. Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill monitoring. Remote Sensing of Environment, 114: 2026–2035, doi: 10.1016/j.rse.2010.04.009
    Skrunes S, Brekke C, Eltoft T. 2014. Characterization of marine surface slicks by radarsat-2 multipolarization features. IEEE Transactions on Geoscience and Remote Sensing, 52(9): 5302–5319, doi: 10.1109/TGRS.2013.2287916
    Somvanshi S S, Kumari M. 2020. Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data. Applied Computing and Geosciences, 7: 100032, doi: 10.1016/j.acags.2020.100032
    Topouzelis K, Singha S. 2017. Oil spill detection using space-borne sentinel-1 SAR imagery. In: Fingas M, ed. Oil Spill Science and Technology. 2nd ed. Amsterdam: Elsevier, 387–402
    Vankayalapati K, Dasari H P, Langodan S, et al. 2023. Multi-mission satellite detection and tracking of October 2019 Sabiti oil spill in the Red Sea. Remote Sensing, 15(1): 38
    Veefkind J P, Aben I, McMullan K, et al. 2012. TROPOMI on the ESA sentinel-5 precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120: 70–83, doi: 10.1016/j.rse.2011.09.027
    Yekeen S T, Balogun A L, Yusof K B W. 2020. A novel deep learning instance segmentation model for automated marine oil spill detection. ISPRS Journal of Photogrammetry and Remote Sensing, 167: 190–200, doi: 10.1016/j.isprsjprs.2020.07.011
    Yin Liping, Zhang Min, Zhang Yuanling, et al. 2018. The long-term prediction of the oil-contaminated water from the Sanchi collision in the East China Sea. Acta Oceanologica Sinica, 37(3): 69–72, doi: 10.1007/s13131-018-1193-5
    Zalik K R 2008. An efficient k-means clustering algorithm. Pattern Recognition Letters, 29, 1385–1391
    Zhang Mei, Sun Xian, Xu Jilin. 2020. Heavy metal pollution in the East China Sea: a review. Marine Pollution Bulletin, 159: 111473, doi: 10.1016/j.marpolbul.2020.111473
    Zhao Jun, Temimi M, Al Azhar M, et al. 2015. Satellite-based tracking of oil pollution in the Arabian gulf and the sea of Oman. Canadian Journal of Remote Sensing, 41(2): 113–125, doi: 10.1080/07038992.2015.1042543
    Zheng Zihao, Yang Zhiwei, Wu Zhifeng, et al. 2019. Spatial variation of NO2 and its impact factors in China: an application of sentinel-5P products. Remote Sensing, 11(16): 1939, doi: 10.3390/rs11161939
  • 加载中
计量
  • 文章访问数:  38
  • HTML全文浏览量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 录用日期:  2024-07-24
  • 修回日期:  2024-07-24
  • 网络出版日期:  2025-01-11

目录

    /

    返回文章
    返回