A bulk extraction method to determine the stable isotope ratios of iron, nickel, copper, zinc, and cadmium in seawater using multi-collector inductively coupled plasma mass spectrometry

Zhan Shen Yuncong Ge Jiahui Liu Wenkai Guan Wenfeng Hu Ruifeng Zhang

Zhan Shen, Yuncong Ge, Jiahui Liu, Wenkai Guan, Wenfeng Hu, Ruifeng Zhang. A bulk extraction method to determine the stable isotope ratios of iron, nickel, copper, zinc, and cadmium in seawater using multi-collector inductively coupled plasma mass spectrometry[J]. Acta Oceanologica Sinica, 2024, 43(7): 125-137. doi: 10.1007/s13131-024-2384-x
Citation: Zhan Shen, Yuncong Ge, Jiahui Liu, Wenkai Guan, Wenfeng Hu, Ruifeng Zhang. A bulk extraction method to determine the stable isotope ratios of iron, nickel, copper, zinc, and cadmium in seawater using multi-collector inductively coupled plasma mass spectrometry[J]. Acta Oceanologica Sinica, 2024, 43(7): 125-137. doi: 10.1007/s13131-024-2384-x

doi: 10.1007/s13131-024-2384-x

A bulk extraction method to determine the stable isotope ratios of iron, nickel, copper, zinc, and cadmium in seawater using multi-collector inductively coupled plasma mass spectrometry

Funds: The National Key Research and Development Program of China under contract No. 2022YFE0136500; the National Nature Science Foundation of China under contract Nos 41890801 and 42076227; the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University under contract No. 21TQ1400201.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Elution scheme for sample purification using an AG MP-1M resin microcolumn (a) and a NOBIAS Chelate-PA1 resin microcolumn (b). For the detailed protocols, see Table 2.

    Figure  2.  δ56Fe, δ60Ni, δ65Cu, δ66Zn, and δ114Cd values in ultrapure water doped with varying concentrations of natural isotope standards (IRMM-524a Fe, NIST-986 Ni, NIST-647 Cu, NIST-3702 Zn, and NIST-3108 Cd) measured according to the proposed method. Each concentration measurement included five replicates. Error bars represent the internal errors (1σ).

    Figure  3.  Theoretical (gray line) versus measured (black points) 1σ internal errors of all samples for δ56Fe, δ60Ni, δ66Zn, and δ114Cd as compared to the MC-ICPMS signal. Theoretical lines were drawn based on Monte Carlo simulations. Vertical gray bars denote the seawater concentrations corresponding to 0.1‰ and 0.05‰ 1σ internal errors. Light blue rectangles indicate the range of signal intensities that correspond to 1 L nature seawater samples following their pretreatment based on the proposed method (de Baar et al., 1994; Moore and Braucher, 2007; Roshan et al., 2018; Richon and Tagliabue, 2019; John et al., 2022).

    Figure  4.  External precisions for δ56Fe, δ60Ni, δ65Cu, δ66Zn, and δ114Cd based on repeated pretreatment and analysis of a single seawater sample. The seawater sample was obtained at 34.88°N, 121.68°E from a depth of ~15 m during the Yellow Sea cruise (March/April 2022). Error bars represent the internal errors (1σ), while lines and gray bars depict the average isotope values and external precisions (average ± 1 SD), respectively.

    Figure  5.  Concentrations and stable isotope profiles of the samples collected at Station K9 (11°N, 150°E) along the GEOTRACES cruise GP09 in the Northwest Pacific compared with the GR19 and GR21 profiles obtained from the GEOTRACES Intermediate Data Product 2021 during the GP19 cruise (https://www.bodc.ac.uk/geotraces/data/idp2021/), SAFe Station (30°N, 140°W) in the Northeast Pacific (Conway and John, 2015a), and GR03 Station (15°N, 165°E) in the Northwest Pacific (Takano et al., 2022). Error bars represent the 1σ internal errors of the isotopic analysis.

    Table  1.   Protocol for preconcentration of Ni, Cu, Fe, Zn and Cd by NOBIAS Chelate-PA1 resin

    Step Collection
    a. Add 61Ni–62Ni, 57Fe–58Fe, 64Zn–67Zn, 110Cd–111Cd double spikes to 1 L seawater sample (pH = 2; 1 mmol/L H2O2) 72 h before
    extraction
    b. Add 3 mL pre-cleaned resin in sample; shake for >5 h (Fe)
    c. Adjust pH to 6.15 ± 0.2 with CH3CHOONH4 and NH3·H2O; shake for >5 h (Ni, Cu, Zn, Cd)
    d. Load sample through filter to separate resin salts
    e. Rinse resin with 125 mL ultrapure water salts
    f. Elute metals with (5 × 5) mL 3 mol/L HNO3 metals
    g. Evaporate samples at 200℃; redigest using 100 µL 16 mol/L HNO3 and 100 µL 10 mol/L HCl to dissolve organics for >2 h
    h. Evaporate samples at 200℃; redissolve in 200 μL 11 mol/L acetic acid + 4 mol/L HCl + 0.003% H2O2 for purification
    Note: − represents no data.
    下载: 导出CSV

    Table  2.   Protocol for purification of Ni, Cu, Fe, Zn and Cd for MC-ICPMS isotopic analysis

    AG MP-1M purification step for Cu, Fe, Zn, Cd
    Step Reagent Volume/µL Collection
    Load AG MP-1M resin into PTFE microcolumns Milli-Q water 20
    Clean column 2 mol/L HNO3 250 × 4
    Rinse ultrapure water 100 × 5
    Condition 11 mol/L HAc + 4 mol/L HCl + 0.003% H2O2 100 × 2
    Load sample 11 mol/L HAc + 4 mol/L HCl + 0.003% H2O2 200 Ni, Cr, V, salts
    Elute Ni + salts 11 mol/L HAc + 4 mol/L HCl + 0.003% H2O2 20 × 7 Ni, Cr, V, salts
    Elute Cu 5 mol/L HCl + 0.003% H2O2 20 × 20 Cu, Mn, Pb, Co
    Elute Fe 1 mol/L HCl 20 × 9 Fe
    Elute Zn 2 mol/L HNO3 + 0.1 mol/L HBr 20 × 12 Zn
    Elute Cd 2 mol/L HNO3 20 × 10 Cd
    NOBIAS Chelate-PA1-Ni purification step
    Step Reagent Volume/µL Collection
    Load NOBIAS Chelate-PA1 resin into PTFE microcolumns Milli-Q water 20
    Clean column 2 mol/L HNO3 250 × 4
    Rinse ultrapure water 100 × 2
    Condition 0.05 mol/L NH4Ac (pH = 6) 100 × 2
    Load sample 0.05 mol/L NH4Ac (pH = 6) 200 salts, Cr
    Elute salts 0.006 mol/L NH4Ac (pH = 6) 20 × 7 salts
    Elute Ni 2 mol/L HNO3 20 × 7 Ni
    Note: Reconstitution steps: (1) evaporate; (2) redigest using 200 µL 16 mol/L HNO3 and 100 µL 30% H2O2 at 160℃ to dissolve organics for >6 h; (3) evaporate; (4) redissolve in 0.1 mol/L HNO3 in 15 mL LDPE tubes for isotopic analysis. LDPE: low-density polyethylene; PTFE: polytetrafluoroethylene. − represents no data.
    下载: 导出CSV

    Table  3.   Cup configurations for Ni, Cu, Fe, Zn, Cd, and Fe isotopic analysis by Neptune MC-ICPMS

    Faraday cup position L4 L3 L2 L1 C H1 H2 H3 H4
    Ni (HR) 57Fe 58Ni 60Ni 61Ni 62Ni
    Cu (LR) 63Cu 64Zn 65Cu 66Zn 67Zn 68Zn
    Fe (HR) 53Cr 54Fe 56Fe 57Fe 58Fe 60Ni
    Zn (HR) 62Ni 64Zn 66Zn 67Zn 68Zn
    Cd (LR) 105Pd 110Cd 111Cd 112Cd 114Cd 117Sn
    Note: Isotopes used in isotope ratios are bolded, while spiked isotopes are underlined. − represents no data.
    下载: 导出CSV

    Table  4.   The blanks (ng) in pretreatment steps of NOBIAS Chelate-PA1 resin extraction, AG MP-1M resin purification, NOBIAS Chelate-PA1 resin Ni purification, and total procedure (±1SD, n = 5)

    Element Extraction AG MP-1M purification NOBIAS Chelate-PA1-Ni purification Total procedure Reference comparison
    Ni 0.04 ± 0.04 0.022 ± 0.000 0.004 ± 0.002 0.04 ± 0.05 ≤ 1b; 0.22c
    Cu 0.05 ± 0.03 0.007 ± 0.001 0.04 ± 0.02 ≤ 1b; 0.29c
    Fe 0.18 ± 0.10 0.069 ± 0.016 0.21 ± 0.20 1.1 ± 0.6a; 0.3d
    Zn 0.16 ± 0.11 0.010 ± 0.002 0.15 ± 0.10 0.53c; 0.06d
    Cd 0.001 ± 0.001 0.006 ± 0.003 0.003 ± 0.003 0.004d
    Note: Total procedure blanks from recent studies are used for comparison. a John and Adkins (2010); b Yang et al. (2020); c Takano et al. (2017); d Conway et al. (2013). − represents no data.
    下载: 导出CSV

    Table  5.   The recoveries in pretreatment steps of NOBIAS Chelate-PA1 resin extraction, AG MP-1M resin purification, and NOBIAS Chelate-PA1 resin Ni purification (±1SD, n = 5)

    Element Extraction AG MP-1M
    purification
    NOBIAS Chelate-PA1-Ni
    purification
    Ni 100.5% ± 0.3% 99.8% ± 0.2% 99.7% ± 0.3%
    Cu 100.2% ± 0.5% 99.5% ± 0.6%
    Fe 97.8% ± 1.4% 99.1% ± 1.1%
    Zn 99.9% ± 0.8% 99.5% ± 0.6%
    Cd 100.1% ± 0.2% 99.7% ± 0.6%
    Note: − represents no data.
    下载: 导出CSV
  • Abadie C, Lacan F, Radic A, et al. 2017. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean. Proceedings of the National Academy of Sciences of the United States of America, 114(5): 858–863, doi: 10.1073/pnas.1603107114
    Abouchami W, Galer S J G, De Baar H J W, et al. 2014. Biogeochemical cycling of cadmium isotopes in the Southern Ocean along the Zero Meridian. Geochimica et Cosmochimica Acta, 127: 348–367, doi: 10.1016/j.gca.2013.10.022
    Alfano M, Cavazza C. 2020. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Science, 29(5): 1071–1089, doi: 10.1002/pro.3836
    Archer C, Vance D, Milne A, et al. 2020. The oceanic biogeochemistry of nickel and its isotopes: new data from the South Atlantic and the Southern Ocean biogeochemical divide. Earth and Planetary Science Letters, 535: 116118, doi: 10.1016/j.jpgl.2020.116118
    Baconnais I, Rouxel O, Dulaquais G, et al. 2019. Determination of the copper isotope composition of seawater revisited: a case study from the Mediterranean Sea. Chemical Geology, 511: 465–480, doi: 10.1016/j.chemgeo.2018.09.009
    Boyd P W, Ellwood M J. 2010. The biogeochemical cycle of iron in the ocean. Nature Geoscience, 3(10): 675–682, doi: 10.1038/ngeo964
    Ciscato E R, Bontognali T R R, Vance D. 2018. Nickel and its isotopes in organic-rich sediments: implications for oceanic budgets and a potential record of ancient seawater. Earth and Planetary Science Letters, 494: 239–250, doi: 10.1016/j.jpgl.2018.04.061
    Conway T M, Hamilton D S, Shelley R U, et al. 2019. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nature Communications, 10(1): 2628, doi: 10.1038/s41467-019-10457-w
    Conway T M, John S G. 2015a. The cycling of iron, zinc and cadmium in the North East Pacific Ocean–insights from stable isotopes. Geochimica et Cosmochimica Acta, 164: 262–283, doi: 10.1016/j.gca.2015.05.023
    Conway T M, John S G. 2015b. Biogeochemical cycling of cadmium isotopes along a high-resolution section through the North Atlantic Ocean. Geochimica et Cosmochimica Acta, 148: 269–283, doi: 10.1016/j.gca.2014.09.032
    Conway T M, John S G. 2014a. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature, 511(7508): 212–215, doi: 10.1038/nature13482
    Conway T M, John S G. 2014b. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Global Biogeochemical Cycles, 28(10): 1111–1128, doi: 10.1002/2014GB 004862
    Conway T M, Rosenberg A D, Adkins J F, et al. 2013. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Analytica Chimica Acta, 793: 44–52, doi: 10.1016/j.aca.2013.07.025
    Coutaud A, Meheut M, Viers J, et al. 2014. Zn isotope fractionation during interaction with phototrophic biofilm. Chemical Geology, 390: 46–60, doi: 10.1016/j.chemgeo.2014.10.004
    de Baar H J W, Saager P M, Nolting R F, et al. 1994. Cadmium versus phosphate in the world ocean. Marine Chemistry, 46(3): 261–281, doi: 10.1016/0304-4203(94)90082-5
    Doucet L S, Laurent O, Mattielli N, et al. 2018. Zn isotope heterogeneity in the continental lithosphere: new evidence from Archean granitoids of the northern Kaapvaal craton, South Africa. Chemical Geology, 476: 260–271, doi: 10.1016/j.chemgeo.2017.11.022
    Ellwood M J, Strzepek R F, Strutton P G, et al. 2020. Distinct iron cycling in a Southern Ocean eddy. Nature Communications, 11(1): 825, doi: 10.1038/s41467-020-14464-0
    Falkowski P G, Barber R T, Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281(5374): 200–206, doi: 10.1126/science.281.5374.200
    Fine R A, Lukas R, Bingham F M, et al. 1994. The western equatorial Pacific: a water mass crossroads. Journal of Geophysical Research: Oceans, 99(C12): 25063–25080, doi: 10.1029/94JC02277
    Fitzsimmons J N, Carrasco G G, Wu Jingfeng, et al. 2015. Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect. Deep-Sea Research Part II: Topical Studies in Oceanography, 116: 130–151, doi: 10.1016/j.dsr2.2014.11.014
    Gall L, Williams H, Siebert C, et al. 2012. Determination of mass-dependent variations in nickel isotope compositions using double spiking and MC-ICPMS. Journal of Analytical Atomic Spectrometry, 27(1): 137–145, doi: 10.1039/C1JA10209E
    Ge Yuncong, Zhang Ruifeng, Jiang Ziyuan, et al. 2022. Determination of Fe, Ni, Cu, Zn, Cd and Pb in seawater by isotope dilution automatic solid-phase extraction—ICP-MS. Acta Oceanologica Sinica, 41(8): 129–136, doi: 10.1007/s13131-022-2016-2
    George E, Stirling C H, Gault-Ringold M, et al. 2019. Marine biogeochemical cycling of cadmium and cadmium isotopes in the extreme nutrient-depleted subtropical gyre of the South West Pacific Ocean. Earth and Planetary Science Letters, 514: 84–95, doi: 10.1016/j.jpgl.2019.02.031
    de Vega C G, Chernonozhkin S M, Grigoryan R, et al. 2020. Characterization of the new isotopic reference materials IRMM-524A and ERM-AE143 for Fe and Mg isotopic analysis of geological and biological samples. Journal of Analytical Atomic Spectrometry, 35(11): 2517–2529, doi: 10.1039/D0JA00225A
    Homoky W B, Conway T M, John S G, et al. 2021. Iron colloids dominate sedimentary supply to the ocean interior. Proceedings of the National Academy of Sciences of the United States of America, 118(13): e2016078118, doi: 10.1073/pnas.2016078118
    Horner T J, Little S H, Conway T M, et al. 2021. Bioactive trace metals and their isotopes as paleoproductivity proxies: an assessment using GEOTRACES-era data. Global Biogeochemical Cycles, 35(11): e2020GB006814, doi: 10.1029/2020GB006814
    Hou Qinghua, Zhou Lian, Gao Shan, et al. 2016. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS. Journal of Analytical Atomic Spectrometry, 31(1): 280–287, doi: 10.1039/C4JA00488D
    Janssen D J, Abouchami W, Galer S J G, et al. 2017. Fine-scale spatial and interannual cadmium isotope variability in the subarctic Northeast Pacific. Earth and Planetary Science Letters, 472: 241–252, doi: 10.1016/j.jpgl.2017.04.048
    John S G. 2012. Optimizing sample and spike concentrations for isotopic analysis by double-spike ICPMS. Journal of Analytical Atomic Spectrometry, 27(12): 2123–2131, doi: 10.1039/C2JA30215B
    John S G, Adkins J F. 2010. Analysis of dissolved iron isotopes in seawater. Marine Chemistry, 119(1–4): 65–76, doi: 10.1016/j.marchem.2010.01.001
    John S G, Conway T M. 2014. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters, 394: 159–167, doi: 10.1016/j.jpgl.2014.02.053
    John S G, Helgoe J, Townsend E, et al. 2018. Biogeochemical cycling of Fe and Fe stable isotopes in the eastern Tropical South Pacific. Marine Chemistry, 201: 66–76, doi: 10.1016/j.marchem.2017.06.003
    John S G, Kelly R L, Bian Xiaopeng, et al. 2022. The biogeochemical balance of oceanic nickel cycling. Nature Geoscience, 15(11): 906–912, doi: 10.1038/s41561-022-01045-7
    Kidder J A, Voinot A, Sullivan K V, et al. 2020. Improved ion-exchange column chromatography for Cu purification from high-Na matrices and isotopic analysis by MC-ICPMS. Journal of Analytical Atomic Spectrometry, 35(4): 776–783, doi: 10.1039/C9JA00359B
    König D, Conway T M, Ellwood M J, et al. 2021. Constraints on the cycling of iron isotopes from a global ocean model. Global Biogeochemical Cycles, 35(9): e2021GB006968, doi: 10.1029/2021GB006968
    Lane T W, Morel F M M. 2000. A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences of the United States of America, 97(9): 4627–4631, doi: 10.1073/pnas.090091397
    Lemaitre N, de Souza G F, Archer C, et al. 2020. Pervasive sources of isotopically light zinc in the North Atlantic Ocean. Earth and Planetary Science Letters, 539: 116216, doi: 10.1016/j.jpgl.2020.116216
    Lemaitre N, Du Jianghui, de Souza G F, et al. 2022. The essential bioactive role of nickel in the oceans: evidence from nickel isotopes. Earth and Planetary Science Letters, 584: 117513, doi: 10.1016/j.jpgl.2022.117513
    Liao Wen-Hsuan, Takano S, Yang Shun-Chung, et al. 2020. Zn isotope composition in the water column of the northwestern Pacific Ocean: the importance of external sources. Global Biogeochemical Cycles, 34(1): e2019GB006379, doi: 10.1029/2019GB006379
    Little S H, Archer C, McManus J, et al. 2020. Towards balancing the oceanic Ni budget. Earth and Planetary Science Letters, 547: 116461, doi: 10.1016/j.jpgl.2020.116461
    Little S H, Archer C, Milne A, et al. 2018. Paired dissolved and particulate phase Cu isotope distributions in the South Atlantic. Chemical Geology, 502: 29–43, doi: 10.1016/j.chemgeo.2018.07.022
    Maréchal C N, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156(1–4): 251–273, doi: 10.1016/S0009-2541(98)00191-0
    Mason T F D, Weiss D J, Horstwood M, et al. 2004. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry part 1. Spectral interferences and their correction. Journal of Analytical Atomic Spectrometry, 19(2): 209–217, doi: 10.1039/B306958C
    SCOR Working Group. 2007. GEOTRACES-an international study of the global marine biogeochemical cycles of trace elements and their isotopes. Geochemistry, 67(2): 85–131, doi: 10.1016/j.chemer.2007.02.001
    Middag R, van Heuven S M A C, Bruland K W, et al. 2018. The relationship between cadmium and phosphate in the Atlantic Ocean unravelled. Earth and Planetary Science Letters, 492: 79–88, doi: 10.1016/j.jpgl.2018.03.046
    May T W, Wiedmeyer R H. 1998. A table of polyatomic interferences in ICP-MS. Atomic Spectroscopy, 19(5): 150–155
    Moore J K, Braucher O. 2007. Observations of dissolved iron concentrations in the World Ocean: implications and constraints for ocean biogeochemical models. Biogeosciences Discuss, 4(2): 1241–1277
    Morel F M M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300(5621): 944–947, doi: 10.1126/science.1083545
    Orians K J, Boyle E A, Bruland K W. 1990. Dissolved titanium in the open ocean. Nature, 348(6299): 322–325, doi: 10.1038/348322a0
    Packman H, Little S H, Baker A R, et al. 2022. Tracing natural and anthropogenic sources of aerosols to the Atlantic Ocean using Zn and Cu isotopes. Chemical Geology, 610: 1–14, doi: 10.1016/j.chemgeo.2022.121091
    Paredes E, Avazeri E, Malard V, et al. 2018. A new procedure for high precision isotope ratio determinations of U, Cu and Zn at nanogram levels in cultured human cells: what are the limiting factors?. Talanta, 178: 894–904, doi: 10.1016/j.talanta.2017.10.046
    Payne C D, Price N M. 1999. Effects of cadmium toxicity on growth and elemental composition of marine phytoplankton. Journal of Phycology, 35(2): 293–302, doi: 10.1046/j.1529-8817.1999.3520293.x
    Pinedo-González P, Hawco N J, Bundy R M, et al. 2020. Anthropogenic Asian aerosols provide Fe to the North Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 117(45): 27862–27868, doi: 10.1073/pnas.2010315117
    Price N M, Morel F M M. 1990. Cadmium and cobalt substitution for zinc in a marine diatom. Nature, 344(6267): 658–660, doi: 10.1038/344658a0
    Richon C, Tagliabue A. 2019. Insights into the major processes driving the global distribution of copper in the ocean from a global model. Global Biogeochemical Cycles, 33(12): 1594–1610, doi: 10.1029/2019GB006280
    Roshan S, DeVries T, Wu Jingfeng, et al. 2018. The internal cycling of zinc in the ocean. Global Biogeochemical Cycles, 32(12): 1833–1849, doi: 10.1029/2018GB006045
    Ruan Yaqing, Zhang Ruifeng, Yang Shun-Chung, et al. 2024. Iron, Nickel, Copper, Zinc, and their stable isotopes along a salinity gradient in the Pearl River Estuary, southeastern China. Chemical Geology, 645: 121893, doi: 10.1016/j.chemgeo.2023.121893
    Rudge J F, Reynolds B C, Bourdon B. 2009. The double spike toolbox. Chemical Geology, 265(3–4): 420–431, doi: 10.1016/j.chemgeo.2009.05.010
    Sieber M, Conway T M, de Souza G F, et al. 2021. Isotopic fingerprinting of biogeochemical processes and iron sources in the iron-limited surface Southern Ocean. Earth and Planetary Science Letters, 567: 116967, doi: 10.1016/j.jpgl.2021.116967
    Sieber M, Conway T M, de Souza G F, et al. 2020. Cycling of zinc and its isotopes across multiple zones of the Southern Ocean: insights from the Antarctic Circumnavigation Expedition. Geochimica et Cosmochimica Acta, 268: 310–324, doi: 10.1016/j.gca.2019.09.039
    Sieber M, Conway T M, de Souza G F, et al. 2019. High-resolution Cd isotope systematics in multiple zones of the Southern Ocean from the Antarctic Circumnavigation Expedition. Earth and Planetary Science Letters, 527: 115799, doi: 10.1016/j.jpgl.2019.115799
    Sieber M, Lanning N T, Bian Xiaopeng, et al. 2023a. The importance of reversible scavenging for the marine Zn cycle evidenced by the distribution of zinc and its isotopes in the Pacific Ocean. Journal of Geophysical Research: Oceans, 128(4): e2022JC019419, doi: 10.1029/2022JC019419
    Sieber M, Lanning N T, Bunnell Z B, et al. 2023b. Biological, physical, and atmospheric controls on the distribution of cadmium and its isotopes in the Pacific Ocean. Global Biogeochemical Cycles, 37(2): e2022GB007441, doi: 10.1029/2022GB007441
    Sullivan K, Layton-Matthews D, Leybourne M, et al. 2020. Copper isotopic analysis in geological and biological reference materials by MC-ICP-MS. Geostandards and Geoanalytical Research, 44(2): 349–362, doi: 10.1111/ggr.12315
    Tagliabue A, Bowie A R, Boyd P W, et al. 2017. The integral role of iron in ocean biogeochemistry. Nature, 543(7643): 51–59, doi: 10.1038/nature21058
    Takano S, Liao Wen-Hsuan, Ho Tung-Yuan, et al. 2022. Isotopic evolution of dissolved Ni, Cu, and Zn along the Kuroshio through the East China Sea. Marine Chemistry, 243: 104135, doi: 10.1016/j.marchem.2022.104135
    Takano S, Tanimizu M, Hirata T, et al. 2017. A simple and rapid method for isotopic analysis of nickel, copper, and zinc in seawater using chelating extraction and anion exchange. Analytica Chimica Acta, 967: 1–11, doi: 10.1016/j.aca.2017.03.010
    Takano S, Tanimizu M, Hirata T, et al. 2014. Isotopic constraints on biogeochemical cycling of copper in the ocean. Nature Communications, 5: 5663, doi: 10.1038/ncomms6663
    Takano S, Tanimizu M, Hirata T, et al. 2013. Determination of isotopic composition of dissolved copper in seawater by multi-collector inductively coupled plasma mass spectrometry after pre-concentration using an ethylenediaminetriacetic acid chelating resin. Analytica Chimica Acta, 784: 33–41, doi: 10.1016/j.aca.2013.04.032
    Thompson C M, Ellwood M J. 2014. Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 165: 1–9, doi: 10.1016/j.marchem.2014.06.009
    Twining B S, Baines S B. 2013. The trace metal composition of marine phytoplankton. Annual Review of Marine Science, 5: 191–215, doi: 10.1146/annurev-marine-121211-172322
    Vance D, de Souza G F, Zhao Ye, et al. 2019. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific. Earth and Planetary Science Letters, 525: 115748, doi: 10.1016/j.jpgl.2019.115748
    Wang Ruomei, Archer C, Bowie A R, et al. 2019. Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: the impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. Chemical Geology, 511: 452–464, doi: 10.1016/j.chemgeo.2018.09.010
    Weber T, John S, Tagliabue A, et al. 2018. Biological uptake and reversible scavenging of zinc in the global ocean. Science, 361(6397): 72–76, doi: 10.1126/science.aap8532
    Weyer S, Schwieters J B. 2003. High precision Fe isotope measurements with high mass resolution MC-ICPMS. International Journal of Mass Spectrometry, 226(3): 355–368, doi: 10.1016/S1387-3806(03)00078-2
    Yang Shun-Chung, Hawco N J, Pinedo-González P, et al. 2020. A new purification method for Ni and Cu stable isotopes in seawater provides evidence for widespread Ni isotope fractionation by phytoplankton in the North Pacific. Chemical Geology, 547: 119662, doi: 10.1016/j.chemgeo.2020.119662
    Yang Shun-Chung, Kelly R L, Bian Xiaopeng, et al. 2021. Lack of redox cycling for nickel in the water column of the eastern Tropical North Pacific oxygen deficient zone: insight from dissolved and particulate nickel isotopes. Geochimica et Cosmochimica Acta, 309: 235–250, doi: 10.1016/j.gca.2021.07.004
    Yang Shun-Chung, Welter L, Kolatkar A, et al. 2019. A new anion exchange purification method for Cu stable isotopes in blood samples. Analytical and Bioanalytical Chemistry, 411(3): 765–776, doi: 10.1007/s00216-018-1498-4
    Zhang Ruifeng, Jensen L, Fitzsimmons J, et al. 2021. Iron isotope biogeochemical cycling in the western Arctic Ocean. Global Biogeochemical Cycles, 35(11): e2021GB006977, doi: 10.1029/2021GB006977
    Zhang Ruifeng, Jensen L T, Fitzsimmons J N, et al. 2019. Dissolved cadmium and cadmium stable isotopes in the western Arctic Ocean. Geochimica et Cosmochimica Acta, 258: 258–273, doi: 10.1016/j.gca.2019.05.028
    Zhang Ruifeng, John S G, Zhang Jing, et al. 2015a. Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: from rivers to estuary to ocean. Earth and Planetary Science Letters, 424: 201–211, doi: 10.1016/j.jpgl.2015.05.031
    Zhang Ruifeng, Ren Jingling, Zhang Zhuoyi, et al. 2022. Distribution patterns of dissolved trace metals (Fe, Ni, Cu, Zn, Cd, and Pb) in China marginal seas during the GEOTRACES GP06-CN cruise. Chemical Geology, 604: 120948, doi: 10.1016/j.chemgeo.2022.120948
    Zhang Ruifeng, Zhang Jing, Ren Jingling, et al. 2015b. X-Vane: a sampling assembly combining a Niskin-X bottle and titanium frame vane for trace metal analysis of sea water. Marine Chemistry, 177: 653–661, doi: 10.1016/j.marchem.2015.10.006
    Zhao Ye, Vance D, Abouchami W, et al. 2014. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochimica et Cosmochimica Acta, 125: 653–672, doi: 10.1016/j.gca.2013.07.045
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  77
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-13
  • 录用日期:  2024-03-07
  • 网络出版日期:  2024-09-19
  • 刊出日期:  2024-07-30

目录

    /

    返回文章
    返回