Forecasting of surface current velocities using ensemble machine learning algorithms for the Guangdong-Hong Kong-Macao Greater Bay Area based on the High Frequency radar data

Lei Ren Lingna Yang Yaqi Wang Peng Yao Jun Wei Fan Yang Fearghal O’ Donncha

Lei Ren, Lingna Yang, Yaqi Wang, Peng Yao, Jun Wei, Fan Yang, Fearghal O’ Donncha. Forecasting of surface current velocities using ensemble machine learning algorithms for the Guangdong-Hong Kong-Macao Greater Bay Area based on the High Frequency radar data[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2363-2
Citation: Lei Ren, Lingna Yang, Yaqi Wang, Peng Yao, Jun Wei, Fan Yang, Fearghal O’ Donncha. Forecasting of surface current velocities using ensemble machine learning algorithms for the Guangdong-Hong Kong-Macao Greater Bay Area based on the High Frequency radar data[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2363-2

doi: 10.1007/s13131-024-2363-2

Forecasting of surface current velocities using ensemble machine learning algorithms for the Guangdong-Hong Kong-Macao Greater Bay Area based on the High Frequency radar data

Funds: The Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. SML2020SP009; the National Basic Research and Development Program of China under contract Nos 2022YFF0802000 and 2022YFF0802004; the “Renowned Overseas Professors” Project of Guangdong Provincial Department of Science and Technology under contract No. 76170-52910004; the Belt and Road Special Foundation of the National Key Laboratory of Water Disaster Prevention under contract No. 2022491711; the National Natural Science Foundation of China under contract No. 51909290; the Key Research and Development Program of Guangdong Province under contract No. 2020B1111020003.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Deployment location of HFR stations and observational area. SC: Shangchuan radar station, WS: Wanshan radar station.

    Figure  2.  Flowchart of random forest algorithm.

    Figure  3.  Representative points P1–P5 and sub-areas Z1–Z8. Observation points with data acquisition rate greater than 90%.

    Figure  4.  Relative importance of main features in the transition model for single time-step forecasting for surface current zonal component at point P1 (partial).

    Figure  5.  Surface current synthetic vectors during June 27, 2021 at P1.a. HFR data and b. application model.

    Figure  6.  Flow chart for single time-step forecasting model of surface current fields.

    Figure  7.  Surface current fields at 02:10 June 24, 2021. a. Model results and b. HFR data.

    Figure  8.  Rolling forecasting of application model.

    Figure  9.  RMSE values of surface velocity components for multi time-step forecasting at points P1–P5. a. Zonal component and b. meridional component.

    Figure  10.  Comparison of surface current vector fields. Model: the reconstruction model; HFR: observation. All times are in UTC+8.

    Figure  11.  Absolute errors of surface velocity components between forecasting and HFR data under different forecasting windows. Left subfigures are the zonal component; right subfigures are the meridional component.

    Table  1.   Statistics of tidal ellipticity, tidal type coefficients and shallow water coefficients

    PointTidal ellipticityTidal type
    coefficient
    Shallow water
    coefficient
    O1K1M2S2
    P1–0.4–0.06–0.220.121.510.32
    P2–0.1–0.11–0.020.211.110.2
    P3–0.07–0.2–0.020.291.090.2
    P40.22–0.34–0.05–0.121.270.19
    P5–0.37–0.27–0.310.441.680.24
    下载: 导出CSV

    Table  2.   Statistics of the optimal correlation coefficients of surface current components

    Point Correlation coefficient Lag time/h
    Zonal component Meridional component Zonal component Meridional component
    P1 0.75 0.31 12 11
    P2 0.78 0.31 12 8
    P3 0.79 0.22 11 9
    P4 0.68 0.24 9 9
    P5 0.55 –0.09 11 9
    下载: 导出CSV

    Table  3.   Forecasting model set-up

    Model Algorithm Feature
    Feature selection Forecasting model
    Baseline model AdaBoost total observation data
    Application model Random Forest AdaBoost observation data whose total variable importance accumulates over 95%
    Rolling model Random Forest AdaBoost observation data whose importance accumulates over 95% at the first time-step
    Reconstruction model Random Forest AdaBoost observation data whose importance accumulates over 95% at each time-step
    下载: 导出CSV

    Table  4.   Assessment statistics of single time-step forecasting (training dataset)

    Point Statistic value
    Zonal component of surface velocity Meridional component of surface velocity
    Feature number RMSE/(cm·s–1) R MAE/(cm·s–1) Feature number RMSE/(cm·s–1) r MAE/(cm·s–1)
    P1 176 0.96 1.00 0.55 176 0.87 1.00 0.4
    8 1.04 1.00 0.58 8 0.94 1.00 0.58
    P2 176 1.46 1.00 0.82 176 1.31 0.99 0.73
    9 1.56 1.00 0.85 8 1.42 0.99 0.76
    P3 176 0.96 1.00 0.52 176 1.06 1.00 0.45
    8 1.04 1.00 0.55 8 1.14 0.99 0.46
    P4 176 2.41 0.99 1.29 176 2.52 0.98 1.35
    9 2.6 0.99 1.36 36 2.68 0.98 1.36
    P5 176 3.55 0.98 2.11 176 1.69 0.99 0.81
    13 4.06 0.98 2.16 13 1.8 0.99 0.85
    下载: 导出CSV

    Table  5.   Assessment statistics of single time-step forecasting (test dataset)

    Point Statistic value
    Zonal component (u) Meridional component (v)
    Feature number RMSE/(cm·s–1) R MAE/(cm·s–1) Feature number RMSE/(cm·s–1) r MAE/(cm·s–1)
    P1 8 0.95 1.00 0.62 8 1.66 0.99 0.67
    P2 9 2.41 0.99 1.00 8 2.05 0.98 0.85
    P3 8 1.55 1.00 0.71 8 3.68 0.97 1.04
    P4 9 5.02 0.98 1.62 36 9.36 0.94 3.29
    P5 13 2.97 0.98 1.75 10 1.90 0.99 0.84
    下载: 导出CSV

    Table  6.   Evaluation of multi time-step forecasting (zonal component of surface velocity)

    Point Forecasting
    step
    Statistic value
    Feature
    number
    RMSE/
    (cm·s–1)
    r MAE/
    (cm·s–1)
    P1 2 8 1.82 1.00 1.09
    3 8 2.59 1.00 1.61
    4 9 3.33 0.99 2.16
    5 10 3.93 0.99 2.6
    6 12 4.47 0.99 3.02
    7 16 4.56 0.99 3.12
    8 23 4.6 0.99 3.13
    9 32 4.72 0.99 3.27
    10 37 4.97 0.99 3.45
    P2 2 8 2.51 1.00 1.49
    3 9 3.57 0.99 2.16
    4 10 4.19 0.99 2.62
    5 11 4.69 0.98 3.02
    6 16 4.91 0.98 3.17
    7 25 4.92 0.98 3.26
    8 33 4.81 0.98 3.27
    9 39 4.97 0.98 3.4
    10 43 5.01 0.98 3.5
    P3 2 8 1.7 1.00 0.99
    3 8 2.27 1.00 1.4
    4 9 2.83 0.99 1.8
    5 10 3.29 0.99 2.19
    6 13 3.61 0.99 2.45
    7 18 3.52 0.99 2.39
    8 26 3.67 0.99 2.5
    9 34 3.74 0.99 2.62
    10 43 3.93 0.99 2.81
    P4 2 12 3.84 0.99 2.18
    3 22 4.74 0.98 2.78
    4 35 5.3 0.97 3.21
    5 48 5.6 0.97 3.48
    6 58 5.71 0.97 3.65
    7 66 5.41 0.97 3.54
    8 74 5.58 0.97 3.68
    9 80 5.67 0.97 3.79
    10 85 5.84 0.97 3.92
    P5 2 58 4.48 0.97 2.72
    3 85 5.51 0.95 3.46
    4 100 5.8 0.95 3.75
    5 108 6.08 0.94 4.02
    6 114 6 0.94 4.04
    7 118 6.29 0.94 4.24
    8 120 6.39 0.94 4.36
    9 122 6.43 0.94 4.4
    10 123 6.68 0.93 4.61
    下载: 导出CSV

    Table  7.   Evaluation of multi time-step forecasting (meridional component of surface velocity)

    Point Forecasting
    steps
    Statistic value
    Feature
    number
    RMSE/
    (cm·s–1)
    r MAE/
    (cm·s–1)
    P1 2 9 1.58 0.99 0.78
    3 25 2.03 0.98 1.08
    4 40 2.35 0.97 1.35
    5 56 2.53 0.97 1.54
    6 74 2.59 0.97 1.67
    7 89 2.46 0.97 1.68
    8 102 2.67 0.97 1.85
    9 111 2.63 0.97 1.87
    10 117 2.84 0.96 2.02
    P2 2 18 2.12 0.98 1.24
    3 46 2.63 0.97 1.66
    4 72 2.96 0.96 1.99
    5 90 3.44 0.95 2.30
    6 102 3.56 0.95 2.54
    7 112 3.82 0.94 2.63
    8 176 4.12 0.93 2.88
    9 126 4.15 0.93 2.90
    10 131 4.33 0.92 3.02
    P3 2 10 1.78 0.99 0.82
    3 19 2.12 0.98 1.08
    4 36 2.28 0.98 1.24
    5 53 2.44 0.97 1.40
    6 65 2.55 0.97 1.54
    7 76 2.57 0.97 1.62
    8 86 2.64 0.97 1.72
    9 93 2.71 0.97 1.79
    10 100 2.89 0.96 1.95
    P4 2 84 4.99 0.92 3.08
    3 109 4.53 0.93 2.82
    4 121 4.71 0.93 2.96
    5 129 5.17 0.91 3.27
    6 134 5.48 0.90 3.55
    7 137 5.49 0.90 3.62
    8 141 5.71 0.89 3.75
    9 143 5.79 0.89 3.85
    10 145 6.29 0.87 4.15
    P5 2 40 2.46 0.97 1.29
    3 67 3.01 0.96 1.67
    4 83 3.31 0.95 1.94
    5 95 3.97 0.93 2.36
    6 104 3.42 0.95 2.18
    7 111 3.43 0.95 2.28
    8 116 3.50 0.95 2.34
    9 121 3.82 0.94 2.60
    10 125 4.42 0.91 3.01
    下载: 导出CSV
  • Ali J, Khan R, Ahmad N, et al. 2012. Random forests and decision trees. International Journal of Computer Science Issues, 9(5): 272–278
    Aydoğan B, Ayat B, Öztürk M N, et al. 2010. Current velocity forecasting in straits with artificial neural networks, a case study: Strait of Istanbul. Ocean Engineering, 37(5/6): 443–453, doi: 10.1016/j.oceaneng.2010.01.016
    Barrick D E, Headrick J M, Bogle R W, et al. 1974. Sea backscatter at HF: Interpretation and utilization of the echo. Proceedings of the IEEE, 62(6): 673–680, doi: 10.1109/PROC.1974.9507
    Basañez A, Pérez-Muñuzuri V. 2021. HF radars for wave energy resource assessment offshore NW Spain. Remote Sensing, 13(11): 2070, doi: 10.3390/rs13112070
    Bradbury M C, Conley D C. 2021. Using artificial neural networks for the estimation of subsurface tidal currents from high-frequency radar surface current measurements. Remote Sensing, 13(19): 3896, doi: 10.3390/rs13193896
    Breiman L. 2001. Random forests. Machine Learning, 45(1): 5–32, doi: 10.1023/A:1010933404324
    Chen Yuru, Paduan J D, Cook M S, et al. 2021. Observations of surface currents and tidal variability off of northeastern taiwan from shore-based high frequency radar. Remote Sensing, 13(17): 3438, doi: 10.3390/rs13173438
    Cheng Peng, Valle-Levinson A. 2009. Influence of lateral advection on residual currents in microtidal estuaries. Journal of Physical Oceanography, 39(12): 3177–3190, doi: 10.1175/2009JPO4252.1
    Cosoli S, Pattiaratchi C, Hetzel Y. 2020. High-frequency radar observations of surface circulation features along the south-western Australian coast. Journal of Marine Science and Engineering, 8(2): 97, doi: 10.3390/jmse8020097
    Dinh V N, McKeogh E. 2019. Offshore wind energy: technology opportunities and challenges. In: Proceedings of the 1st Vietnam Symposium on Advances in Offshore Engineering. Singapore: Springer
    Fang Shenguang, Xie Yufeng, Cui Liqin. 2015. Analysis of tidal prism evolution and characteristics of the Lingdingyang Bay at Pearl River estuary. MATEC Web of Conferences, 25: 01006, doi: 10.1051/matecconf/20152501006
    Han Qinghua, Gui Changqing, Xu Jie, et al. 2019. A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm. Construction and Building Materials, 226: 734–742, doi: 10.1016/j.conbuildmat.2019.07.315
    Hastie T, Tibshirani R, Friedman J. 2009. Random forests. In: Hastie T, Tibshirani R, Friedman J, eds. The Elements of Statistical Learning. New York: Springer, 587–604
    Immas A, Do N, Alam M R. 2021. Real-time in situ prediction of ocean currents. Ocean Engineering, 228: 108922, doi: 10.1016/j.oceaneng.2021.108922
    Jishun R. 1991. On the geotectonics of southern China. Acta Geologica Sinica‐English Edition, 4(2): 111–130, doi: 10.1111/j.1755-6724.1991.mp4002001.x
    Johnston K, Ver Hoef J M, Krivoruchko K, et al. 2001. Using ArcGIS Geostatistical Analyst. Redlands: Esri Redlands
    Kim S J, Kõrgersaar M, Ahmadi N, et al. 2021. The influence of fluid structure interaction modelling on the dynamic response of ships subject to collision and grounding. Marine Structures, 75: 102875, doi: 10.1016/j.marstruc.2020.102875
    Klemas V. 2011. Remote sensing techniques for studying coastal ecosystems: an overview. Journal of Coastal Research, 27(1): 2–17
    Li Ruixiang, Chen Changsheng, Xia Huayong, et al. 2014. Observed wintertime tidal and subtidal currents over the continental shelf in the northern South China Sea. Journal of Geophysical Research: Oceans, 119(8): 5289–5310, doi: 10.1002/2014JC 009931
    Li Chuan, Wu Xiongbin, Yue Xianchang, et al. 2017. Extraction of wind direction spreading factor from broad-beam high-frequency surface wave radar data. IEEE Transactions on Geoscience and Remote Sensing, 55(9): 5123–5133, doi: 10.1109/TGRS.2017.2702394
    Lin Mingsen, Xu Dewei, Li Xiaosun. 2003. Application of satellite data in monsoon and circulation of south China sea. In: Proceedings of SPIE 4892, Ocean Remote Sensing and Applications. Hangzhou: SPIE
    Liu Qinyu, Kaneko A, Jilan S. 2008. Recent progress in studies of the South China Sea circulation. Journal of Oceanography, 64(5): 753–762, doi: 10.1007/s10872-008-0063-8
    Liu Zhen, Zhang Zhilong, Zhou Cuiying, et al. 2021. An adaptive inverse-distance weighting interpolation method considering spatial differentiation in 3D geological modeling. Geosciences, 11(2): 51, doi: 10.3390/geosciences11020051
    Ma Lei, Fu Tengyu, Blaschke T, et al. 2017. Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers. ISPRS International Journal of Geo-Information, 6(2): 51, doi: 10.3390/ijgi6020051
    Mantovani C, Corgnati L, Horstmann J, et al. 2020. Best practices on high frequency radar deployment and operation for ocean current measurement. Frontiers in Marine Science, 7: 210, doi: 10.3389/fmars.2020.00210
    Mao Xiaojun, Peng Liuhua, Wang Zhonglei. 2022. Nonparametric feature selection by random forests and deep neural networks. Computational Statistics & Data Analysis, 170: 107436
    Mitchell T M. 1999. Machine learning and data mining. Communications of the ACM, 42(11): 30–36, doi: 10.1145/319382.319388
    Paduan J D, Washburn L. 2013. High-frequency radar observations of ocean surface currents. Annual Review of Marine Science, 5: 115–136, doi: 10.1146/annurev-marine-121211-172315
    Port A, Gurgel K W, Staneva J, et al. 2011. Tidal and wind-driven surface currents in the German Bight: HFR observations versus model simulations. Ocean Dynamics, 61(10): 1567–1585, doi: 10.1007/s10236-011-0412-9
    Ren Lei, Hartnett M. 2017a. Sensitivity analysis of a data assimilation technique for hindcasting and forecasting hydrodynamics of a complex coastal water body. Computers & GeoSciences, 99: 81–90
    Ren Lei, Hartnett M. 2017b. Prediction of surface currents using high frequency CODAR data and decision tree at a marine renewable energy test site. Energy Procedia, 107: 345–350, doi: 10.1016/j.egypro.2016.12.171
    Ren Lei, Hu Zhan, Hartnett M. 2018. Short-term forecasting of coastal surface currents using high frequency radar data and artificial neural networks. Remote Sensing, 10(6): 850, doi: 10.3390/rs10060850
    Sagi O, Rokach L. 2018. Ensemble learning: A survey. WIREs: Data Mining and Knowledge Discovery, 8(4): e1249, doi: https://doi.org/10.1002/widm.1249
    Sun Shuo, Zhang Qianli, Sun Junzhong, et al. 2022. Lead–acid battery SOC Prediction using improved adaBoost algorithm. Energies, 15(16): 5842, doi: 10.3390/en15165842
    Vavatsikos A P, Sotiropoulou K F, Tzingizis V. 2022. GIS-assisted suitability analysis combining PROMETHEE II, analytic hierarchy process and inverse distance weighting. Operational Research, 22(5): 5983–6006, doi: 10.1007/s12351-022-00706-0
    Vilibić I, Šepić J, Mihanović H, et al. 2016. Self-organizing maps-based ocean currents forecasting system. Scientific Reports, 6: 22924, doi: 10.1038/srep22924
    Wang Lina, Cao Yu, Deng Xilin, et al. 2023a. Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model. Acta Oceanologica Sinica, 42(10): 54–66, doi: 10.1007/s13131-023-2246-y
    Wang Yuchen, Imai K, Mulia I E, et al. 2023b. Data Assimilation using high-frequency radar for tsunami early warning: a case study of the 2022 Tonga Volcanic Tsunami. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB025153, doi: 10.1029/2022JB025153
    Wang Wenxiong, Rainbow P S. 2020. Environmental Pollution of the Pearl River Estuary, China. Berlin: Springer
    Wang Shuangling, Zhou Fengxia, Chen Fajin, et al. 2021. Spatiotemporal distribution characteristics of nutrients in the drowned tidal inlet under the influence of tides: a case study of Zhanjiang Bay, China. International Journal of Environmental Research and Public Health, 18(4): 2089, doi: 10.3390/ijerph 18042089
    Wei Xing, Cai Shuqun, Zhan Weikang. 2021. Impact of anthropogenic activities on morphological and deposition flux changes in the Pearl River Estuary, China. Scientific Reports, 11(1): 16643, doi: 10.1038/s41598-021-96183-0
    Wu Yanli, Ke Yutian, Chen Zhuo, et al. 2020. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. CATENA, 187: 104396, doi: 10.1016/j.catena.2019.104396
    Xie Lili, Liu Xia, Yang Qingshu, et al. 2015. Variations of current and sediment transport in Lingding Bay during spring tide in flood season driven by human activities. Journal of Sediment Research (in Chinese), (3): 56–62
    Yang Yun. 2017. Temporal Data Mining via Unsupervised Ensemble Learning. Amsterdam: Elsevier
    Yang Liling, Yang Fang, Yu Shunchao, et al. 2021. The hydrodynamic division of lingdingyang estuary and its application in the impact analysis of large water-related projects. IOP Conference Series: Earth and Environmental Science, 643(1): 012135., doi: 10.1088/1755-1315/643/1/012135
    Ye A L, Robinson I S. 1983. Tidal dynamics in the South China Sea. Geophysical Journal International, 72(3): 691–707, doi: 10.1111/j.1365-246X.1983.tb02827.x
    Yin Xunqiang, Shi Junqiang, Qiao Fangli. 2018. Evaluation on surface current observing network of high frequency ground wave radars in the Gulf of Thailand. Ocean Dynamics, 68(4): 575–587
  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 录用日期:  2024-04-25
  • 网络出版日期:  2024-08-07

目录

    /

    返回文章
    返回