Corrections of shipboard GPS radiosonde soundings and applications on historical records in the eastern tropical Indian Ocean and South China Sea

Zewen Wu Xin Liu Yunkai He Haoyu Jiang Bo Peng Ke Huang

Zewen Wu, Xin Liu, Yunkai He, Haoyu Jiang, Bo Peng, Ke Huang. Corrections of shipboard GPS radiosonde soundings and applications on historical records in the eastern tropical Indian Ocean and South China Sea[J]. Acta Oceanologica Sinica, 2024, 43(9): 54-69. doi: 10.1007/s13131-024-2361-4
Citation: Zewen Wu, Xin Liu, Yunkai He, Haoyu Jiang, Bo Peng, Ke Huang. Corrections of shipboard GPS radiosonde soundings and applications on historical records in the eastern tropical Indian Ocean and South China Sea[J]. Acta Oceanologica Sinica, 2024, 43(9): 54-69. doi: 10.1007/s13131-024-2361-4

doi: 10.1007/s13131-024-2361-4

Corrections of shipboard GPS radiosonde soundings and applications on historical records in the eastern tropical Indian Ocean and South China Sea

Funds: The Second Tibetan Plateau Scientific Expedition and Research Program under contract No. 2019QZKK0102-02; the National Natural Science Foundation of China under contract Nos 42230402, 92158204, 42176026, 42076201, 41049903, 41149908, 41249906, 41249907, and 41249910; the Guangdong Basic and Applied Basic Research Foundation under contract No. 2022A1515240069; the Marine Economic Development Special Program of Guangdong Province (Six Major Marine Industries): Research and Demonstration of Critical Technologies for Comprehensive Prevention and Control of Natural Disaster in Offshore Wind Farms, China under contract No. 29[2023]; the Fund of Fujian Provincial Key Laboratory of Marine Physical and Geological Processes under contract No. KLMPG-22-02.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Geographical maps of GPS-TK (a) and CF-06-A (b) historical radiosonde records over the ETIO and SCS. Colored symbols represent the various years when the datasets were collected.

    Figure  2.  Temperature (a) and RH (c) profiles of RS92-SGP (red), CF-06-A (blue) and GPS-TK (black) launched at (0°N, 86°E) at 13:33, 5 April 2012; temperature (b) and RH (d) profiles launched at (0.026°N, 84°E) at 19:38, 4 April 2012; schematic on the simultaneous inter-comparison soundings (e). MS: middle stratosphere; LS: lower stratosphere; UT: upper troposphere; LT: lower troposphere.

    Figure  3.  Comparisons of GPS-TK radiosonde with COSMIC: mean (red) (a) and Root Mean Square (RMS) (blue) (b) of GPS-TK temperature difference in daytime; comparisons of GPS-TK radiosonde with COSMIC: mean (red) (c) and RMS (blue) (d) of GPS-TK RH difference in daytime; comparisons of GPS-TK radiosonde with COSMIC: mean (red) (e) and RMS (blue) (f) of GPS-TK temperature difference in nighttime; comparisons of GPS-TK radiosonde with COSMIC: mean (red) (g) and RMS (blue) (h) of GPS-TK RH difference in nighttime. The collocation of COSMIC is within 3 h and 400 km. Gray lines: individual GPS-TK difference. Gray lines in a, c, e, and g are the individual temperature differences for each inter-comparison. UT: upper troposphere; LT: lower troposphere.

    Figure  4.  Mean (a) and Root Mean Square (RMS) (b) of GPS-TK temperature differences in daytime; mean (c) and RMS (d) of CF-06-A temperature differences in daytime; mean (e) and RMS (f) of GPS-TK temperature differences in nighttime; mean (g) and RMS (h) of CF-06-A temperature differences in nighttime. Red lines: mean biases; gray lines: individual differences; blue lines: RMS. Gray lines in a, c, e, and g are the individual temperature differences for each inter-comparison. LT: lower troposphere; UT: upper troposphere; LS: lower stratosphere; MS: middle stratosphere. Updated figure of Xie et al. (2014).

    Figure  5.  Mean (a) and Root Mean Square (RMS) (b) of GPS-TK RH differences in daytime; mean (c) and RMS (d) of CF-06-A RH differences in daytime; mean (e) and RMS (f) of GPS-TK RH differences in nighttime; mean (g) and RMS (h) of CF-06-A RH differences in nighttime. Red lines: mean biases; gray lines: individual differences; blue lines: RMS. Gray lines in a, c, e, and g are the individual temperature differences for each inter-comparison. LS: lower stratosphere. UT: upper troposphere; LT: lower troposphere. Updated figure of Xie et al. (2014).

    Figure  6.  Around clock biases of temperature (a), RH (b), altitude (c), and refractivity (d) derived from GPS-TK minus RS92-SGP (blue line) and CF-06-A minus RS92-SGP (red line). The green line represents the daytime and nighttime demarcation line in local time. Rose-color values represent temperature (a), RH (b), altitude (c), and refractivity (d).

    Figure  7.  Temperature errors of GPS-TK (a) and CF-06-A (b) radiosondes in daytime and nighttime. Shown are: the mean nighttime error profile (blue), the mean sunrise time profile (green), the mean noontime profile (red), and the mean sunset time profile (purple). MS: middle stratosphere; LS: lower stratosphere; UT: upper troposphere; LT: lower troposphere.

    Figure  8.  RH errors of GPS-TK (a) and CF-06-A (b) radiosondes in daytime and nighttime. Shown are: the mean nighttime profile (blue), the mean sunrise-time profile (green), the mean noontime profile (red), and the mean sunset-time profile (purple). MS: middle stratosphere; LS: lower stratosphere; UT: upper troposphere; LT: lower troposphere.

    Figure  9.  Temperature errors of GPS-TK and CF-06-A corrected measurements by comparing to RS92-SGP. a and b. Mean and RMS temperature errors of corrected GPS-TK in daytime; c and d. mean and RMS temperature errors of corrected CF-06-A in daytime; e and f. mean and RMS temperature errors of corrected GPS-TK in nighttime; g and h. mean and RMS temperature errors of CF-06-A in nighttime. Red line: mean error. MS: middle stratosphere; LS: lower stratosphere; UT: upper troposphere; LT: lower troposphere.

    Figure  10.  RH errors of GPS-TK and CF-06-A corrected measurements by comparing to RS92-SGP. a and b. Mean and RMS RH errors of corrected GPS-TK in daytime; c and d. mean and RMS RH errors of corrected CF-06-A in daytime; e and f. mean and RMS RH errors of corrected GPS-TK in nighttime; g and h. mean and RMS RH errors of CF-06-A in nighttime. Red line: mean error. LS: lower stratosphere; UT: upper troposphere; LT: lower troposphere.

    Figure  11.  Inter-comparison of GPS-TK historical records with COSMIC temperature measurements before and after correction. a and b. Mean and RMS temperature differences of GPS-TK in daytime before correction; c and d. mean and RMS temperature differences of GPS-TK in daytime after correction; e and f. mean and RMS temperature differences of GPS-TK in nighttime before correction; g and h. mean and RMS temperature differences of GPS-TK in nighttime after correction. Gray lines in a, c, e, and g are the individual temperature differences for each inter-comparison. The collocation of COSMIC is 3 h and 400 km. UT: upper troposphere; LT: lower troposphere.

    Figure  12.  Inter-comparison of GPS-TK historical records with COSMIC RH measurements before and after correction. a and b. Mean and RMS RH differences of GPS-TK in daytime before correction; c and d. mean and RMS RH differences of GPS-TK in daytime after correction; e and f. mean and RMS RH differences of GPS-TK in nighttime before correction; g and h. mean and RMS of GPS-TK RH differences in nighttime after correction. Gray lines in a, c, e, and g are the individual RH differences for each inter-comparison. The collocation of COSMIC is 3 h and 400 km. UT: upper troposphere; LT: lower troposphere.

    Figure  13.  Atmospheric boundary layer height derived from RS92-SGP (red), GPS-TK (black) and CF-06-A (blue) in daytime (a, b) and nighttime (c, d) flights. Horizontal ordinate represents the release sample number. a and c are derived from measurements before corrections; b and d are after corrections.

    Figure  14.  Histograms of CAPEs (a) and CINs (b) derived from GPS-TK historical soundings during the JJA (June, July and August, 2006–2011) before (blue) and after (red) corrections.

    Table  1.   Characteristics of GPS-TK, CF-06-A, and RS92-SGP radiosonde systems (updated table of Xie et al., 2014)

    Radiosonde Manufacturer
    and country
    Temperature sensor Humidity sensor Digital frequency
    specification
    Anti-radiation coating Weight/g
    GPS-TK LAGEO, IAP,
    Beijing (China)
    band-gap thermistor:
    type SHT 10,
    range from −40℃ to +125℃,
    resolution 0.04℃,
    response time 5 s,
    uncertainty N/A,
    area 4.94 mm × 7.47 mm,
    software adjustment, no
    polymer capacitive:
    type SHT 10,
    range from 0% to 100%RH,
    resolution 0.4% RH,
    response time 8 s,
    uncertainty N/A,
    area 4.94 mm × 7.47 mm,
    software adjustment, no
    range from 400 MHz
    to 406 MHz,
    tuning N/A,
    stability N/A,
    R/S power N/A
    no aluminised 150
    CF-06-A Beijing Changfeng
    Micro-electronics
    Technology Co.
    (China)
    bead thermistor:
    type MF51MP,
    range from −90℃ to +60℃,
    resolution 0.1℃,
    response time 0.8 s,
    uncertainty 0.5℃,
    diameter 0.8 mm,
    software adjustment, yes
    thin-film capacitor:
    type Sweden XC06,
    range from 0% to 100 % RH,
    resolution 1 % RH,
    response time 1.5 s,
    uncertainty 5% RH,
    area 3.8 mm × 5 mm,
    software adjustment, no
    range from 400 MHz
    to 406 MHz,
    tuning, any in range,
    stability +/− 10 kHz,
    R/S power 100 mW
    space micro-process
    anti-radiation technology,
    aluminized, protective cap
    270
    RS92-SGP Vaisala, Ltd.
    (Finland)
    thin wire capacitor:
    range from −90℃ to +60℃,
    resolution 0.1℃,
    response time 0.4 s,
    uncertainty 0.2℃,
    diameter 0.5 mm,
    software adjustment, yes
    thin-film capacitor,
    heated twin sensor
    (polymer for low RH):
    type RD100,
    range from 0%−100% RH,
    resolution 1% RH,
    response time 0.5 s,
    uncertainty 2% RH,
    area 2.5 mm × 2.5 mm,
    software adjustment, yes
    range from 400 MHz
    to 406 MHz,
    tuning 10 kHz,
    stability +/− 2 kHz,
    R/S power 60 mW
    reflectivity coating,
    aluminized, shiny silver
    290
    Note: R/S, root mean square power; N/A, not available.
    下载: 导出CSV

    Table  2.   Details of 20 simultaneous balloon-borne radiosonde flights over the ETIO

    No. Longitude Latitude Local time Day/night No. Longitude Latitude Local time Day/night
    1* 111.092°E 7.860°N Feb. 28, 14:00 day 11 82.504°E 3.485°S Mar. 20, 20:00 night
    2 90.483°E 6.009°N Mar. 10, 18:00 day 12 82.535°E 4.474°S Mar. 21, 08:00 day
    3 90.462°E 6.050°N Mar. 11, 00:00 night 13 80.080°E 4.989°S Mar. 22, 20:00 night
    4 89.003°E 5.993°N Mar. 11, 20:00 night 14 80.003°E 3.494°S Mar. 23, 14:00 day
    5 86.995°E 6.020°N Mar. 13, 20:00 night 15 80.014°E 2.995°S Mar. 23, 20:00 night
    6 84.497°E 5.964°N Mar. 15, 20:00 night 16 80.090°E 0.494°S Mar. 25, 02:00 night
    7 82.469°E 6.001°N Mar. 16, 19:00 night 17 80.132°E 0.017°S Mar. 25, 14:00 day
    8 82.535°E 0.943°N Mar. 18, 20:00 night 18 80.049°E 0.492°N Mar. 25, 20:00 night
    9 82.508°E 0.009°S Mar. 19, 02:00 night 19 84.009°E 0.026°N Apr. 04, 19:00 night
    10 82.544°E 1.454°S Mar. 19, 20:00 night 20 86.002°E 0.003°N Apr. 05, 14:00 day
    Note: Bold font represents the daytime flights and unbold font represents the nighttime flights. Symbol * represents the missing of RS92-SGP measurement. Local time format: month day, hour (UTC+6).
    下载: 导出CSV
  • Angling M. 2016. ROM SAF CDOP-2 visiting scientist report 28: A new software tool for reducing systematic residual ionospheric errors in GNSS-RO level 3 products. https://rom-saf.eumetsat.int/Publications/reports/romsaf_vs28_rep_v10.pdf [2016-12-16]
    Antikainen V, Paukkunen A. 1994. Studies on improving humidity measurements in radiosondes. In: Proceedings of WMO Tech. Conference on Instruments and Methods of Observation. Geneva, Switzerland, WMO: 137–141
    Balagurov A, Kats A, Krestyannikova N, et al. 2006. WMO Radiosonde Humidity Sensor Intercomparison: final report of Phase I and Phase II. In: Instruments and Observing Methods Report No. 85, WMO/TD-No. 1305, Geneva, Switzerland: WMO, https://library.wmo.int/records/item/35357-twmo-radiosonde-humidity-sensor-intercomparison-final-report-of-phase-i-and-phase-ii
    Baldwin M P, Gray L J, Dunkerton T J, et al. 2001. The quasi-biennial oscillation. Reviews of Geophysics, 39(2): 179–229, doi: 10.1029/1999RG000073
    Chang Liang, Guo Lixin, Feng Guiping, et al. 2018. Comparison of the Arctic upper-air temperatures from radiosonde and radio occultation observations. Acta Oceanologica Sinica, 37(1): 30–39, doi: 10.1007/s13131-018-1156-x
    Cheng Yinhe, Zhou Shengqi, Wang Dongxiao, et al. 2015. Statistical characteristics of the surface ducts over the South China Sea from GPS radiosonde data. Acta oceanologica sinica, 34(11): 63–70, doi: 10.1007/s13131-015-0749-x
    Da Silveira, Fisch R G, Machado L, et al. 2006. WMO Intercomparison of GPS Radiosondes, Alcantara, Brazil, 2001. Geneva: WMO
    Durre I, Vose R S, Wuertz D B. 2006. Overview of the integrated global radiosonde archive. Journal of Climate, 19(1): 53–68, doi: 10.1175/JCLI3594.1
    Eisenman I, Yu Lisan, Tziperman E. 2005. Westerly wind bursts: ENSO’s tail rather than the dog?. Journal of Climate, 18(24): 5224–5238
    Goff J A, Gratch S. 1946. Low-pressure properties of water from −160 to 212 °F. In: Transactions of the American Society of Heating and Ventilating Engineers. New York, NY, USA: American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc., 52: 95−122.
    Guichard F, Parsons D, Miller E. 2000. Thermodynamic and radiative impact of the correction of sounding humidity bias in the tropics. Journal of Climate, 13(20): 3611–3624, doi: 10.1175/1520-0442(2000)013<3611:TARIOT>2.0.CO;2
    He Wenying, Ho S P, Chen Hongbin, et al. 2009. Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophysical Research Letters, 36(17): L17807, doi: 10.1029/2009GL038712
    Ho S P, Goldberg M, Kuo Ying-Hwa, et al. 2009. Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: preliminary results. Terrestrial, Atmospheric and Oceanic Sciences, 20(1): 87–100, doi: 10.3319/TAO.2007.12.06.01(F3C
    Hooper A H. 1986. WMO international radiosonde comparison. Phase I: Beaufort Park, UK, 1984. Geneva, Swizerland: WMO, 118
    Ivanov A, Kats S, Kurnosenko S, et al. 1991. WMO international radiosonde comparison. Phase III: Dzhambul, USSR, 1989. Geneva: WMO, 135
    Jauhiainen H, Lehmuskero M, Åkerberg J. 2005. Vaisala RS92 Radiosondes offer a high level of GPS performance with a reliable telemetry link. TECO 2005 Bucharest, https://www.sigidwiki.com/images/5/5c/Vaisala_RS92_Radiosondes_Presentation.pdf [2005-05-05]
    Kuo Y H, Schreiner W S, Wang J, et al. 2005. Comparison of GPS Radio occultation soundings with radiosondes. Geophysical Research Letters, 32(5): L05817, doi: 10.1029/2004GL021443
    Li Wei, Zhao Peitao, Guo Qiyun, et al. 2011. The international radiosonde intercomparison results for China-made GPS radiosonde. Journal of Applied Meteorological Science (in Chinese), 22(4): 453–462
    Lucas C, Zipser E J. 2000. Environmental variability during TOGA COARE. Journal of the Atmospheric Sciences, 57(15): 2333–2350, doi: 10.1175/1520-0469(2000)057<2333:EVDTC>2.0.CO;2
    Luers J K. 1997. Temperature error of the Vaisala RS90 radiosonde. Journal of Atmospheric and Oceanic Technology, 14(6): 1520–1532, doi: 10.1175/1520-0426(1997)014<1520:TEOTVR>2.0.CO;2
    Luers J K, Eskridge R E. 1995. Temperature corrections for the VIZ and Vaisala radiosondes. Journal of Applied Meteorology, 34(6): 1241–1253, doi: 10.1175/1520-0450(1995)034<1241:TCFTVA>2.0.CO;2
    Luers J K, Eskridge R E. 1998. Use of radiosonde temperature data in climate studies. Journal of Climate, 11(5): 1002–1019, doi: 10.1175/1520-0442(1998)011<1002:UORTDI>2.0.CO;2
    Mclnturff R M, Finger F G, Johnson K W, et al. 1979. Day-night differences in radiosonde observations of the stratosphere and troposphere. NOAA technical memorandum NWS NMC, 63, https://repository.library.noaa.gov/view/noaa/55700
    Meehl G A. 1997. The South Asian monsoon and the tropospheric biennial oscillation. Journal of Climate, 10(8): 1921–1943, doi: 10.1175/1520-0442(1997)010<1921:TSAMAT>2.0.CO;2
    Miloshevich L M, Vömel H, Paukkunen A, et al. 2001. Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. Journal of Atmospheric and Oceanic Technology, 18(2): 135–156, doi: 10.1175/1520-0426(2001)018<0135:CACORH>2.0.CO;2
    Miloshevich L M, Vömel H, Whiteman D N, et al. 2009. Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. Journal of Geophysical Research: Atmospheres, 114(D11): D11305, doi: 10.1029/2008JD011565
    Nash J, Oakley T, Vömel H, et al. 2011. WMO intercomparison of high quality radiosonde system. Geneva, Swizerland: WMO
    Nash J, Schmidlin F J. 1987. WMO international radiosonde comparison (U.K. 1984, U.S.A. 1985). Geneva, Swizerland: WMO, 103
    Nash J, Smout R, Oakley T, et al. 2006. WMO intercomparison of radiosonde systems, Vacoas, Mauritius, 2-25 February 2005. In: Instruments and Observing Methods Report No. 83: The WMO Intercomparison of Radiosonde Systems: final report. Geneva, Switzerland: WMO, https://library.wmo.int/records/item/35338-the-wmo-intercomparison-of-radiosonde-systems-final-report
    Peng Shiqiu, Zhu Yuhang, Huang Ke, et al. 2016. Detecting the structure of marine atmospheric boundary layer over the Northern South China Sea by shipboard GPS sondes. Atmospheric Science Letters, 17(10): 564–568, doi: 10.1002/asl.693
    Qin Z, Zou X, Weng F. 2012. Comparison between linear and nonlinear trends in NOAA-15 AMSU-A brightness temperatures during 1998–2010. Climate Dynamics, 39(7): 1763–1779
    Schmidlin F J. 1988. WMO international radiosonde intercomparison. Phase II, 1985, Wallops Island, Virginia USA. Geneva, Swizerland: WMO, 113
    Seidel D J, Angell J K, Christy J, et al. 2004. Uncertainty in signals of large-scale climate variations in radiosonde and satellite upper-air temperature datasets. Journal of Climate, 17(11): 2225–2240, doi: 10.1175/1520-0442(2004)017<2225:UISOLC>2.0.CO;2
    Shi Rui, Chen Ju, Guo Xinyu, et al. 2017. Ship observations and numerical simulation of the marine atmospheric boundary layer over the spring oceanic front in the northwestern South China Sea. Journal of Geophysical Research: Atmospheres, 122(7): 3733–3753, doi: 10.1002/2016JD026071
    Sinha P R, Sahu L K, Manchanda R K, et al. 2016. Transport of tropospheric and stratospheric ozone over India: balloon-borne observations and modeling analysis. Atmospheric Environment, 131: 228–242, doi: 10.1016/j.atmosenv.2016.02.001
    Sun Bomin, Reale A, Seidel D J, et al. 2010. Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. Journal of Geophysical Research: Atmospheres, 115(D23): D23104, doi: 10.1029/2010JD014457
    Suortti T M, Kivi R, Kats A, et al. 2008. Tropospheric comparisons of vaisala radiosondes and balloon-borne frost-point and lyman-α hygrometers during the LAUTLOS-WAVVAP Experiment. Journal of Atmospheric and Oceanic Technology, 25(2): 149–166, doi: 10.1175/2007JTECHA887.1
    Tian Xiaoxu, Zou Xiaolei. 2020. Comparison of advanced technology microwave sounder biases estimated using radio occultation and hurricane Florence (2018) captured by NOAA-20 and S-NPP. Advances in Atmospheric Sciences, 37(3): 269–277, doi: 10.1007/s00376-019-9119-5
    Vömel H, Oltmans S J, Johnson B J, et al. 2002. Balloon-borne observations of water vapor and ozone in the tropical upper troposphere and lower stratosphere. Journal of Geophysical Research: Atmospheres, 107(D14): 4210, doi: 10.1029/2001JD000707
    Vömel H, Selkirk H, Miloshevich L, et al. 2007. Radiation dry bias of the vaisala RS92 humidity sensor. Journal of Atmospheric and Oceanic Technology, 24(6): 953–963, doi: 10.1175/JTECH2019.1
    Wang Lei, Bao Qing, Li Jinxiao, et al. 2019. Comparisons of the temperature and humidity profiles of reanalysis products with shipboard GPS sounding measurements obtained during the 2018 Eastern Indian Ocean Open Cruise. Atmospheric and Oceanic Science Letters, 12(3): 177–183, doi: 10.1080/16742834.2019.1588065
    Wang Junhong, Cole H L, Carlson D J, et al. 2002. Corrections of humidity measurement errors from the vaisala RS80 radiosonde-application to TOGA COARE data. Journal of Atmospheric and Oceanic Technology, 19(7): 981–1002, doi: 10.1175/1520-0426(2002)019<0981:COHMEF>2.0.CO;2
    Wang Junhong, Zhang Liangying. 2008. Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. Journal of Climate, 21(10): 2218–2238, doi: 10.1175/2007JCLI1944.1
    Wang Junhong, Zhang Liangying, Dai Aiguo, et al. 2013. Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data. Journal of Atmospheric and Oceanic Technology, 30(2): 197–214, doi: 10.1175/JTECH-D-12-00113.1
    Wang Jin, Zhang Jie, Fan Chenqing, et al. 2014. Validation of the “HY-2” altimeter wet tropospheric path delay correction based on radiosonde data. Acta Oceanologica Sinica, 33(5): 48–53, doi: 10.1007/s13131-014-0473-y
    Wang Dongxiao, Zhou Wen, Yu Xiaoli, et al. 2010. Marine atmospheric boundary layers associated with summer monsoon onset over the South China Sea in 1998. Atmospheric and Oceanic Science Letters, 3(5): 263–270, doi: 10.1080/16742834.2010.11446880
    Xie Qiang, Huang Ke, Wang Dongxiao, et al. 2014. Intercomparison of GPS radiosonde soundings during the eastern tropical Indian Ocean experiment. Acta Oceanologica Sinica, 33(1): 127–134, doi: 10.1007/s13131-014-0422-9
    Yagi S, Mita A, Inoue N. 1996. WMO international radiosonde comparison. Phase IV: Tsukuba, Japan, 15 February–12 March 1993. Geneva, Swizerland: WMO, 129
    Yang Lei, Wang Dongxiao, Huang Jian, et al. 2015. Toward a mesoscale hydrological and marine meteorological observation network in the South China Sea. Bulletin of the American Meteorological Society, 96(7): 1117–1135, doi: 10.1175/BAMS-D-14-00159.1
    Yao Wen, Ma Ying, Gao Lina. 2017. Comparison of relative humidity data between L-band and 59–701 sounding system. Journal of Applied Meteorological Science (in Chinese), 28(2): 218–226
    Yoneyama K, Fujita M, Sato N, et al. 2008. Correction for radiation dry bias found in RS92 radiosonde data during the MISMO field experiment. Sola, 4: 13–16, doi: 10.2151/sola.2008-004
    Yu Xiaoli, Xie Qiang, Wang Dongxiao. 2009. Diurnal cycle of marine atmospheric boundary layer during the 1998 summer monsoon onset over South China Sea. Journal of Tropical Oceanography (in Chinese), 28(2): 31–35
    Yunck T P, Fetzer E J, Mannucci A M, et al. 2009. Use of radio occultation to evaluate atmospheric temperature data from spaceborne infrared sensors. Terrestrial, Atmospheric and Oceanic Sciences, 20(1): 71–85, doi: 10.3319/TAO.2007.12.08.01(F3C
    Zhai Panmao, Eskridge R E. 1996. Analyses of inhomogeneities in radiosonde temperature and humidity time series. Journal of Climate, 9(4): 884–894, doi: 10.1175/1520-0442(1996)009<0884:AOIIRT>2.0.CO;2
    Zhang Weixing, Lou Yidong, Cao Yunchang, et al. 2019. Corrections of radiosonde-based precipitable water using ground-based GPS and applications on historical radiosonde data over China. Journal of Geophysical Research: Atmospheres, 124(6): 3208–3222, doi: 10.1029/2018JD029662
    Zou Xiaolei, Liu Hui, Kuo Ying-Hwa. 2019. Occurrence and detection of impact multipath simulations of bending angle. Quarterly Journal of the Royal Meteorological Society, 145(721): 1690–1704, doi: 10.1002/qj.3520
    Zou Xiaolei, Tian Xiaoxu. 2018. Hurricane warm-core retrievals from AMSU-A and remapped ATMS measurements with rain contamination eliminated. Journal of Geophysical Research: Atmospheres, 123(19): 10815–10829, doi: 10.1029/2018JD028934
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  64
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-19
  • 录用日期:  2024-06-17
  • 网络出版日期:  2024-09-10
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回