Mangrove monitoring and extraction based on multi-source remote sensing data: A deep learning method based on SAR and optical image fusion

Yiheng Xie Xiaoping Rui Yarong Zou Heng Tang Ninglei Ouyang

Yiheng Xie, Xiaoping Rui, Yarong Zou, Heng Tang, Ninglei Ouyang. Mangrove monitoring and extraction based on multi-source remote sensing data: A deep learning method based on SAR and optical image fusion[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2356-1
Citation: Yiheng Xie, Xiaoping Rui, Yarong Zou, Heng Tang, Ninglei Ouyang. Mangrove monitoring and extraction based on multi-source remote sensing data: A deep learning method based on SAR and optical image fusion[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2356-1

doi: 10.1007/s13131-024-2356-1

Mangrove monitoring and extraction based on multi-source remote sensing data: A deep learning method based on SAR and optical image fusion

Funds: The Key R&D Project of Hainan Province under contract No. ZDYF2023SHFZ097; the National Natural Science Foundation of China under contract No. 42376180.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Geographical location, SAR image, and optical image of the study area.

    Figure  2.  Weighted fusion result of SAR image and optical image.

    Figure  3.  Diagram of the AttU-Net model structure. Conv, convergence.

    Figure  4.  Diagram of network structure of SE-Net.

    Figure  5.  Experimental comparison diagram of a comparison experiment. The white area in the image represents the area considered by the model as mangrove vegetation. The black area represents the area where the model considers non-mangrove vegetation. The red dashed box indicates the area with obvious recognition error.

    Figure  6.  Comparison of predicted results of ablation experiments. The white area in the image represents the area considered by the model as mangrove vegetation. The black area represents the area where the model considers non-mangrove vegetation. The red dashed box indicates the area with obvious recognition error.

    Figure  7.  Line charts of accuracy and loss values of the training set and test set based on fusion images.

    Figure  8.  Comparison of prediction results of mangrove vegetation in the test area. The white area in the image represents the area considered by the model as mangrove vegetation. The black area represents the area where the model considers non-mangrove vegetation. The red dashed box indicates the area with obvious recognition error.

    Table  1.   Full polarization imaging mode and capability of Gaofen-3 SAR image

    Serial
    number
    Working modeAngle of
    incidence/(°)
    Visual number
    A × E
    Resolution/mImaging bandwidth/kmPolarization
    mode
    Wave
    position
    NominalAzimuth
    direction
    Distance
    direction
    NominalScope
    1fully polarized band 120–411 × 1886−93020–35full polarizationQ1–Q28
    2fully polarized band 220–383 × 2252515–304035–50full polarizationWQ1–WQ16
    3wave pattern20–411 × 210108–125 × 55 × 5full polarizationQ1–Q28
    下载: 导出CSV

    Table  2.   Satellite payload of Gaofen-6

    Camera type Band number Spectrum/μm Substellar point pixel resolution Covering width
    Off-axis TMA total reflection type panchromatic band (P) 0.45–0.90 full color: better than 2 m >90 km
    Off-axis TMA total reflection type blue spectrum (B1) 0.45–0.52 multispectral: better than 8 m >90 km
    Off-axis TMA total reflection type green spectrum (B2) 0.52–0.60 multispectral: better than 8 m >90 km
    Off-axis TMA total reflection type red band (B3) 0.63–0.69 multispectral: better than 8 m >90 km
    Off-axis TMA total reflection type near-infrared spectrum (B4) 0.76–0.90 multispectral: better than 8 m >90 km
    下载: 导出CSV

    Table  3.   Layout of confusion matrix

    Prediction typeReal type
    TerraceNon-terraced field
    TerraceTP (true positive)FP (false positive)
    Non-terraced fieldFN (false negative)TN (true negative)
    下载: 导出CSV

    Table  4.   Precision evaluation results of comparison experiments based on fusion images

    Contrast region (a:b) F1-score/% OA/% Kappa/%
    0:10 96.696 94.347 77.192
    1:9 98.282 97.016 86.968
    2:8 98.567 97.506 88.959
    3:7 96.688 94.350 77.542
    4:6 96.067 93.349 74.674
    5:5 97.643 95.936 82.919
    6:4 96.039 93.257 73.462
    7:3 98.067 96.598 83.897
    8:2 96.969 94.721 76.504
    9:1 96.438 93.835 73.547
    10:0 95.635 92.481 68.569
    下载: 导出CSV

    Table  5.   Accuracy evaluation results of ablation test area

    No.BaseSE-NetDrop.BNOA/%F1-score/%Kappa/%
    195.03897.10779.694
    296.94898.23986.797
    396.69798.09285.814
    493.80496.35275.891
    595.75597.52982.494
    694.96297.07379.015
    795.20397.20680.302
    897.50798.56888.959
    Note: √ in the table proves that the module is added to the model; if √ is not marked, it proves that the module is not added to the model. Bold font denotes the highest value in this accuracy evaluation metric.
    下载: 导出CSV

    Table  6.   Training parameter settings

    Parameter Specific setting
    Batch size 16
    Learning rate 1 × 10–4
    Epoch 65
    Optimizer Adam
    下载: 导出CSV

    Table  7.   Accuracy evaluation results of test area

    Test area Model Accuracy evaluation
    OA/% F1-Score/% Kappa/%
    Test area 1 AttU-Net (ours) 97.082 88.008 86.348
    U-Net 95.870 81.583 79.268
    Seg-Net 71.099 39.136 25.900
    Dense-Net 95.056 75.064 72.445
    Res-Net 94.974 75.102 72.410
    Test area 2 AttU-Net (ours) 97.506 98.567 88.959
    U-Net 95.038 97.107 79.694
    Seg-Net 92.363 95.753 58.229
    Dense-Net 94.571 96.835 80.925
    Res-Net 94.083 96.524 76.728
    Test area 3 AttU-Net (ours) 93.952 87.878 83.851
    U-Net 93.553 86.171 82.009
    Seg-Net 51.064 50.002 19.944
    Dense-Net 91.625 82.041 76.633
    Res-Net 92.383 83.158 78.328
    Test area 4 AttU-Net (ours) 89.083 85.572 77.021
    U-Net 85.762 80.093 69.644
    Seg-Net 83.485 82.329 67.046
    Dense-Net 78.289 65.889 52.542
    Res-Net 80.267 69.966 57.147
    Note: Bold font denates xxx..
    下载: 导出CSV
  • Braun A C. 2021. More accurate less meaningful? A critical physical geographer’s reflection on interpreting remote sensing land-use analyses. Progress in Physical Geography: Earth and Environment, 45(5): 706–735, doi: 10.1177/0309133321991814
    Cao Jingjing, Leng Wanchun, Liu Kai, et al. 2018. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sensing, 10(1): 89, doi: 10.3390/rs10010089
    Chen Zhaojun, Zhang Meng, Zhang Huaiqing, et al. 2023. Mapping mangrove using a red-edge mangrove index (REMI) based on Sentinel-2 multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 61: 4409511
    Darko P O, Kalacska M, Arroyo-Mora J P, et al. 2021. Spectral complexity of hyperspectral images: A new approach for mangrove classification. Remote Sensing, 13(13): 2604, doi: 10.3390/rs13132604
    de Souza Moreno G M, de Carvalho Júnior O A, de Carvalho O L F, et al. 2023. Deep semantic segmentation of mangroves in Brazil combining spatial, temporal, and polarization data from Sentinel-1 time series. Ocean & Coastal Management, 231: 106381
    Fu Bolin, Liang Yiyin, Lao Zhinan, et al. 2023. Quantifying scattering characteristics of mangrove species from Optuna-based optimal machine learning classification using multi-scale feature selection and SAR image time series. International Journal of Applied Earth Observation and Geoinformation, 122: 103446, doi: 10.1016/j.jag.2023.103446
    Fu Chang, Song Xiqiang, Xie Yu, et al. 2022. Research on the spatiotemporal evolution of mangrove forests in the Hainan Island from 1991 to 2021 based on SVM and Res-UNet Algorithms. Remote Sensing, 14(21): 5554, doi: 10.3390/rs14215554
    Giri C. 2016. Observation and monitoring of mangrove forests using remote sensing: opportunities and challenges. Remote Sensing, 8(9): 783, doi: 10.3390/rs8090783
    Gonzalez-Perez A, Abd-Elrahman A, Wilkinson B, et al. 2022. Deep and machine learning image classification of coastal wetlands using unpiloted aircraft system multispectral images and Lidar datasets. Remote Sensing, 14(16): 3937, doi: 10.3390/rs14163937
    Huang Sha, Tang Lina, Hupy J P, et al. 2021. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1): 1–6, doi: 10.1007/s11676-020-01155-1
    Jia Mingming, Wang Zongming, Wang Chao, et al. 2019. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery. Remote Sensing, 11(17): 2043, doi: 10.3390/rs11172043
    Kamal M, Phinn S, Johansen K. 2014. Characterizing the spatial structure of mangrove features for optimizing image-based mangrove mapping. Remote Sensing, 6(2): 984–1006, doi: 10.3390/rs6020984
    Kulkarni S C, Rege P P. 2020. Pixel level fusion techniques for SAR and optical images: a review. Information Fusion, 59: 13–29, doi: 10.1016/j.inffus.2020.01.003
    Li Jinjin, Zhang Jiacheng, Yang Chao, et al. 2023. Comparative analysis of pixel-level fusion algorithms and a new high-resolution dataset for SAR and optical image fusion. Remote Sensing, 15(23): 5514, doi: 10.3390/rs15235514
    Lu Ying, Wang Le. 2021. How to automate timely large-scale mangrove mapping with remote sensing. Remote Sensing of Environment, 264: 112584, doi: 10.1016/j.rse.2021.112584
    Luo Yanmin, Ouyang Yi, Zhang Rencheng, et al. 2017. Multi-feature joint sparse model for the classification of mangrove remote sensing images. ISPRS International Journal of Geo-Information, 6(6): 177, doi: 10.3390/ijgi6060177
    Mahmoud M I. 2012. Information extraction from paper maps using object oriented analysis (OOA) [dissertation]. Enschede: University of Twente
    Maurya K, Mahajan S, Chaube N. 2021. Remote sensing techniques: mapping and monitoring of mangrove ecosystem—A review. Complex & Intelligent Systems, 7(6): 2797–2818
    Purnamasayangsukasih P R, Norizah K, Ismail A A M, et al. 2016. A review of uses of satellite imagery in monitoring mangrove forests. IOP Conference Series: Earth and Environmental Science, 37: 012034, doi: 10.1088/1755-1315/37/1/012034
    Raghavendra N S, Deka P C. 2014. Support vector machine applications in the field of hydrology: a review. Applied Soft Computing, 19: 372–386, doi: 10.1016/j.asoc.2014.02.002
    Sandra M C, Rajitha K. 2023. Random forest and support vector machine classifiers for coastal wetland characterization using the combination of features derived from optical data and synthetic aperture radar dataset. Journal of Water & Climate Change, 15(1): 29–49
    Shen Zhen, Miao Jing, Wang Junjie, et al. 2023. Evaluating feature selection methods and machine learning algorithms for mapping mangrove forests using optical and synthetic aperture radar data. Remote Sensing, 15(23): 5621, doi: 10.3390/rs15235621
    Su Jiming, Zhang Fupeng, Yu Chuanxiu, et al. 2023. Machine learning: next promising trend for microplastics study. Journal of Environmental Management, 344: 118756, doi: 10.1016/j.jenvman.2023.118756
    Tian Lei, Wu Xiaocan, Tao Yu, et al. 2023. Review of remote sensing-based methods for forest aboveground biomass estimation: progress, challenges, and prospects. Forests, 14(6): 1086, doi: 10.3390/f14061086
    Toosi N B, Soffianian A R, Fakheran S, et al. 2019. Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, 19: e00662., doi: 10.1016/j.gecco.2019.e00662
    Tran T V, Reef R, Zhu Xuan. 2022. A review of spectral indices for mangrove remote sensing. Remote Sensing, 14(19): 4868, doi: 10.3390/rs14194868
    Twilley R R. 2019. Mangrove wetlands. In: Messina M G, Conner W H, eds. Southern Forested Wetlands. London: Routledge, 445–473
    Wang Pin, Fan En, Wang Peng. 2021a. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognition Letters, 141: 61–67, doi: 10.1016/j.patrec.2020.07.042
    Wang Youshao, Gu Jidong. 2021b. Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. International Biodeterioration & Biodegradation, 162: 105248
    Wei Yidi, Cheng Yongcun, Yin Xiaobin, et al. 2023. Deep learning-based classification of high-resolution satellite images for mangrove mapping. Applied Sciences, 13(14): 8526, doi: 10.3390/app13148526
    Xie Yiheng, Chen Renxi, Yu Mingge, et al. 2023. Improvement and application of UNet network for avoiding the effect of urban dense high-rise buildings and other feature shadows on water body extraction. International Journal of Remote Sensing, 44(12): 3861–3891, doi: 10.1080/01431161.2023.2229498
    Xu Chen, Wang Juanle, Sang Yu, et al. 2023a. An effective deep learning model for monitoring mangroves: a case study of the Indus delta. Remote Sensing, 15(9): 2220, doi: 10.3390/rs15092220
    Xu Mengjie, Sun Chuanwang, Zhan Yanhong, et al. 2023b. Impact and prediction of pollutant on mangrove and carbon stocks: a machine learning study based on urban remote sensing data. Geoscience Frontiers, 15(3): 101665
    Yang Gang, Huang Ke, Sun Weiwei, et al. 2022. Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove. ISPRS Journal of Photogrammetry and Remote Sensing, 189: 236–254, doi: 10.1016/j.isprsjprs.2022.05.003
    Yu Mingge, Rui Xiaoping, Zou Yarong, et al. 2023. Research on automatic recognition of mangrove forests based on CU net model. Journal of Oceanography (in Chinese), 45(3): 125–135
    Zhang Junyao, Yang Xiaomei, Wang Zhihua, et al. 2021. Remote sensing based spatial-temporal monitoring of the changes in coastline mangrove forests in China over the last 40 years. Remote Sensing, 13(10): 1986, doi: 10.3390/rs13101986
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  48
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 录用日期:  2024-06-24
  • 网络出版日期:  2024-08-01

目录

    /

    返回文章
    返回