-
Abstract: The tide plays a pivotal role in the ocean, affecting the global ocean circulation and supplying the bulk of the energy for the global meridional overturning circulation. To further investigate internal tides and their impacts on circulation, it is imperative to incorporate tidal forcing into the eddy-resolving global ocean circulation model. In this study, we successfully incorporated explicit tides (eight major constituents) into a global eddy-resolving general ocean circulation model and evaluated its tidal simulation ability. We obtained harmonic constants by analyzing sea surface height through tidal harmonic analysis and compared them with the analysis data Topex Poseidon Cross-Overs v9 (TPXO9), the open ocean tide dataset from 102 open-ocean tide observations, and tide gauge stations from World Ocean Circulation Experiment. The results demonstrated that the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP) Climate System Ocean Model 3.0 (LICOM3.0) effectively simulated tides, with errors predominantly occurring in nearshore regions. The tidal amplitude simulated in LICOM3.0 was greater than that of TPXO9, and these high-amplitude areas exhibited greater errors. The amplitude error of the M2 constituent was larger, while the phase error of the K1 constituent was more significant. Furthermore, we further compared our results with those from other models.
-
Key words:
- tide /
- eddy resolution /
- ocean general circulation models /
- harmonic analysis /
- LICOM3.0
-
Figure 4. Spectral analysis of sea levels observed (obs) by Yap (
9.5083 °N,138.1283 °E) and Kodiak (57.7317 °N,152.511 7°W) in WOCE (Ponchaut et al., 2001) and simulated by LICOM3.0. Table 1. Calculation formulas for the nodal factor f and the nodal angle μ
Constituent f μ/(°) K1 1.0060 +0.1150 cos$ {N}_{0} $ –0.0088 cos(2$ {N}_{0} $) +0.0006 cos(3$ {N}_{0} $)–8.86° sin$ {N}_{0} $ + 0.68° sin(2$ {N}_{0} $) − 0.07° sin(3$ {N}_{0} $) O1 1.0089 +0.1871 cos$ {N}_{0} $ −0.0147 cos(2$ {N}_{0} $) +0.0014 cos(3$ {N}_{0} $)10.80° sin$ {N}_{0} $ − 1.34° sin(2$ {N}_{0} $) + 0.19° sin(3$ {N}_{0} $) P1 1 0 Q1 same as O1 same as O1 M2 1.0004 −0.0373 cos$ {N}_{0} $ +0.0003 cos(2$ {N}_{0} $)–2.14° sin$ {N}_{0} $ S2 1 0 N2 same as M2 same as M2 K2 1.0241 +0.2863 cos$ {N}_{0} $ +0.0083 cos(2$ {N}_{0} $) −0.0015 cos(3$ {N}_{0} $)–17.74° sin$ {{N}}_{0} $ + 0.68° sin(2$ {N}_{0} $) − 0.04° sin(3$ {N}_{0} $) Table 2. Total (d), amplitude (da), and phase (dp) errors of the four major constituents of LICOM3.0 relative to TPXO
Experiment Error/cm M2 S2 K1 O1 d da dp d da dp d da dp d da dp wd0.5 9.86 7.21 5.37 5.12 4.00 2.47 3.58 2.36 2.25 2.59 1.26 1.99 wd1 10.70 8.16 5.45 5.38 4.25 2.57 3.77 2.49 2.36 2.57 1.25 1.94 wd1.5 11.39 8.88 5.59 5.59 4.43 2.67 3.92 2.59 2.45 2.57 1.26 1.91 Table 3. Phases-dependent
$ {V}_{0}+\mu $ and nodal factor f values of each constituent calculated by DFO, tidal harmonic analysis program UTIDE and LICOM3.0 tidal module in 2016, corresponding to the dates of January 1 and July 1 of that yearConstituent ($ {V}_{0}+\mu $) (Jan. 1)/(°) f (Jul. 1) DFO UTIDE LICOM3.0 DFO UTIDE LICOM3.0 M2 210.745 210.729 210.857 1.037 1.037 1.037 K1 9.242 9.227 9.299 0.886 0.886 0.886 O1 202.050 202.106 202.000 0.809 0.809 0.813 S2 0.001 0 0 0.998 0.998 1.000 P1 349.847 349.852 349.903 1.011 1.011 1.000 Q1 43.050 43.384 41.752 0.821 0.823 0.813 N2 50.690 50.690 50.610 1.037 1.037 1.037 K2 198.451 198.412 198.722 0.752 0.752 0.755 Table 4. Errors relative to TPXO in LICOM3.0 and ICON-O (von Storch et al., 2023), including total error
$ d $ , amplitude error$ {d}_{\mathrm{a}} $ , and phase error$ {d}_{\mathrm{p}} $ Constituent Error/cm LICOM3.0 ICON-O $ d $ $ {d}_{\mathrm{a}} $ $ {d}_{\mathrm{p}} $ $ d $ $ {d}_{\mathrm{a}} $ $ {d}_{\mathrm{p}} $ M2 10.19 6.83 6.09 14.25 10.63 9.39 K1 2.85 1.66 1.92 4.60 3.26 3.25 O1 4.30 2.55 2.98 5.19 3.89 3.43 S2 5.37 3.12 3.84 7.90 4.71 1.50 P1 1.12 0.52 0.86 1.49 1.08 1.02 Q1 0.77 0.47 0.56 0.86 0.48 0.72 N2 1.51 0.87 1.06 2.30 1.50 1.74 K2 1.19 0.78 0.73 2.30 1.19 1.96 Table 5. Signal
$ S $ , total error$ d $ , amplitude error$ {d}_{\mathrm{a}} $ , and phase error$ {d}_{\mathrm{p}} $ of the eight major constituents of LICOM3.0 relative to st102 data, the percentages of captured sea surface height variance$ {V}_{\mathrm{c}\mathrm{a}\mathrm{p}\mathrm{t}} $ for each constituent of LICOM3.0, STORMTIDE (Müller et al., 2014), and HYCOM (Arbic et al., 2010), and the root square sum (RSS) values of the eight major constituentsConstituent and RSS Error/cm $ {V}_{\mathrm{capt}} $/% $ S $ $ d $ $ {d}_{\mathrm{a}} $ $ {d}_{\mathrm{p}} $ LICOM3.0 STORMTIDE HYCOM M2 33.22 13.85 9.56 8.12 82.62 93.9 93.8 K1 11.26 3.44 1.89 2.39 90.67 95.0 95.1 O1 7.76 6.21 3.31 4.62 35.89 83.2 89.7 S2 12.62 6.35 4.33 4.03 74.66 86.9 83.2 P1 3.62 1.61 0.73 1.26 80.22 94.7 95.2 Q1 1.62 1.06 0.66 0.73 57.19 64.7 82.1 N2 6.86 2.02 1.36 1.21 91.07 96.0 95.9 K2 3.43 1.58 1.23 0.74 78.78 89.7 76.9 RSS 39.04 17.11 11.36 10.64 80.76 92.8 92.6 -
Ansong J K, Arbic B K, Alford M H, et al. 2017. Semidiurnal internal tide energy fluxes and their variability in a global ocean model and moored observations. Journal of Geophysical Research: Oceans, 122(3): 1882–1900, doi: 10.1002/2016JC012184 Ansong J K, Arbic B K, Buijsman M C, et al. 2015. Indirect evidence for substantial damping of low-mode internal tides in the open ocean. Journal of Geophysical Research: Oceans, 120(9): 6057–6071, doi: 10.1002/2015JC010998 Arbic B K, Alford M H, Ansong J K, et al. 2018. A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. In: Chassignet E P, Pascual A, Tintoré J, et al, eds. New Frontiers in Operational Oceanography. GODAE OceanView, 308–334 Arbic B K, Garner S T, Hallberg R W, et al. 2004. The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Research Part II: Topical Studies in Oceanography, 51(25/26): 3069–3101, doi: 10.1016/j.dsr2.2004.09.014 Arbic B K, Richman J G, Shriver J F, et al. 2012. Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25(2): 20–29, doi: 10.5670/oceanog.2012.38 Arbic B K, Wallcraft A J, Metzger E J. 2010. Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32(3/4): 175–187, doi: 10.1016/j.ocemod.2010.01.007 Buijsman M C, Ansong J K, Arbic B K, et al. 2016. Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. Journal of Physical Oceanography, 46(5): 1399–1419., doi: 10.1175/JPO-D-15-0074.1 Buijsman M C, Stephenson G R, Ansong J K, et al. 2020. On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. Ocean Modelling, 152: 101656, doi: 10.1016/j.ocemod.2020.101656 Carrere L, Arbic B K, Dushaw B, et al. 2021. Accuracy assessment of global internal-tide models using satellite altimetry. Ocean Science, 17(1): 147–180, doi: 10.5194/os-17-147-2021 Codiga D L. 2011. Unified tidal analysis and prediction using the UTide matlab functions. Technical Report 2011-01. Narragansett: Graduate School of Oceanography, University of Rhode Island, 59 Egbert G D. 1997. Tidal data inversion: interpolation and inference. Progress in Oceanography, 40(1–4): 53–80, doi: 10.1016/S0079-6611(97)00023-2 Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of Barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204, doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2 Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788): 775–778, doi: 10.1038/35015531 Fisheries and Oceans Canada. 2017. Table for the astronomical argument V+U. https://www.dfo-mpo.gc.ca/science/data-donnees/tidal-marees/argument-u-v-eng.html [2017-01-26/2023-09-15] Fisheries and Oceans Canada. 2018. Table of values for the node factor f. https://www.dfo-mpo.gc.ca/science/data-donnees/tidal-marees/facteur-node-factor-eng.html[2018-02-27/2023-09-15] Hendershott M C. 1972. The effects of solid earth deformation on global ocean tides. Geophysical Journal of the Royal Astronomical Society, 29(4): 389–402, doi: 10.1111/j.1365-246X.1972.tb06167.x Jayne S R. 2009. The impact of abyssal mixing parameterizations in an ocean general circulation model. Journal of Physical Oceanography, 39(7): 1756–1775, doi: 10.1175/2009JPO4085.1 Jayne S R, St. Laurent L C. 2001. Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28(5): 811–814, doi: 10.1029/2000GL012044 Jin Jiangbo, Guo Run, Zhang Minghua, et al. 2022. Formulation of a new explicit tidal scheme in revised LICOM2.0. Geoscientific Model Development, 15(10): 4259–4273, doi: 10.5194/gmd-15-4259-2022 Kostov Y, Armour K C, Marshall J. 2014. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophysical Research Letters, 41(6): 2108–2116, doi: 10.1002/2013GL058998 Li Yiwen, Liu, Hailong, Ding Mengrong, et al. 2020. Eddy-resolving simulation of CAS-LICOM3 for phase 2 of the ocean model intercomparison project. Advances in Atmospheric Sciences, 37(10): 1067–1080, doi: 10.1007/s00376-020-0057-z Li Zhuhua, von Storch J S. 2020. M2 internal-tide generation in STORMTIDE2. Journal of Geophysical Research: Oceans, 125(8): e2019JC015453, doi: 10.1029/2019JC015453 Logemann K, Linardakis L, Korn P, et al. 2021. Global tide simulations with ICON-O: testing the model performance on highly irregular meshes. Ocean Dynamics, 71(1): 43–57, doi: 10.1007/s10236-020-01428-7 Marshall J, Speer K. 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5(3): 171–180, doi: 10.1038/ngeo1391 Melet A, Hallberg R, Legg S, et al. 2013. Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. Journal of Physical Oceanography, 43(3): 602–615, doi: 10.1175/JPO-D-12-055.1 Müller M, Arbic B K, Richman J G, et al. 2015. Toward an internal gravity wave spectrum in global ocean models. Geophysical Research Letters, 42(9): 3474–3481, doi: 10.1002/2015GL063365 Müller M, Cherniawsky J Y, Foreman M G G, et al. 2012. Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophysical Research Letters, 39(19): l19607 Müller M, Cherniawsky J Y, Foreman M G G, et al. 2014. Seasonal variation of the M2 tide. Ocean Dynamics, 64(2): 159–177, doi: 10.1007/s10236-013-0679-0 Müller M, Haak H, Jungclaus J H, et al. 2010. The effect of ocean tides on a climate model simulation. Ocean Modelling, 35(4): 304–313, doi: 10.1016/j.ocemod.2010.09.001 Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Research Part I: Oceanographic Research Papers, 45(12): 1977–2010, doi: 10.1016/S0967-0637(98)00070-3 Murray R J. 1996. Explicit generation of orthogonal grids for ocean models. Journal of Computational Physics, 126(2): 251–273, doi: 10.1006/jcph.1996.0136 National Centers for Environmental Information. 2006. 2-Minute Gridded Global Relief Data (ETOPO2) v2. Beijing, China: National Geophysical Data Center, National Centers for Environmental Information, doi: 10.7289/V5J1012Q Niwa Y, Hibiya T. 2014. Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Modelling, 80: 59–73, doi: 10.1016/j.ocemod.2014.05.003 Peng Shiqiu, Liao Jiawen, Wang Xiaowei, et al. 2021. Energetics-based estimation of the diapycnal mixing induced by internal tides in the Andaman Sea. Journal of Geophysical Research: Oceans, 126(4): e2020JC016521, doi: 10.1029/2020JC016521 Ponchaut F, Lyard F, Le Provost C. 2001. An analysis of the tidal signal in the WOCE Sea level dataset. Journal of Atmospheric and Oceanic Technology, 18(1): 77–91, doi: 10.1175/1520-0426(2001)018<0077:AAOTTS>2.0.CO;2 Pugh D T. 1996. Tides, Surges and Mean Sea-Level (Reprinted with Corrections). Chichester: John Wiley & Sons Ltd, 59–140 Rocha C B, Chereskin T K, Gille S T, et al. 2016a. Mesoscale to submesoscale wavenumber spectra in drake passage. Journal of Physical Oceanography, 46(2): 601–620, doi: 10.1175/JPO-D-15-0087.1 Rocha C B, Gille S T, Chereskin T K, et al. 2016b. Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophysical Research Letters, 43(21): 11304–11311 Saenko O A, Merryfield W J. 2005. On the effect of topographically enhanced mixing on the global ocean circulation. Journal of Physical Oceanography, 35(5): 826–834, doi: 10.1175/JPO2722.1 Savage A C, Arbic B K, Alford M H, et al. 2017a. Spectral decomposition of internal gravity wave sea surface height in global models. Journal of Geophysical Research: Oceans, 122(10): 7803–7821, doi: 10.1002/2017JC013009 Savage A C, Arbic B K, Richman J G, et al. 2017b. Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. Journal of Geophysical Research: Oceans, 122(3): 2519–2538, doi: 10.1002/2016JC012331 Schiller A. 2004. Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region. Ocean Modelling, 6(1): 31–49, doi: 10.1016/S1463-5003(02)00057-4 Schiller A, Fiedler R. 2007. Explicit tidal forcing in an ocean general circulation model. Geophysical Research Letters, 34(3): L03611 Shum C K, Woodworth P L, Andersen O B, et al. 1997. Accuracy assessment of recent ocean tide models. Journal of Geophysical Research: Oceans, 102(C11): 25173–25194, doi: 10.1029/97JC00445 Simmons H L, Jayne S R, St. Laurent L C, et al. 2004. Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6(3/4): 245–263, doi: 10.1016/S1463-5003(03)00011-8 Siyanbola O Q, Buijsman M C, Delpech A, et al. 2023. Remote internal wave forcing of regional ocean simulations near the U.S. West Coast. Ocean Modelling, 181: 102154, doi: 10.1016/j.ocemod.2022.102154 Song Pengyang, Sidorenko D, Scholz P, et al. 2023. The tidal effects in the finite-volumE sea ice–ocean model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing. Geoscientific Model Development, 16(1): 383–405, doi: 10.5194/gmd-16-383-2023 St. Laurent L C, Simmons H L Jayne S R. 2002. Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters, 29(23): 21 Stammer D, Ray R D, Andersen O B, et al. 2014. Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3): 243–282, doi: 10.1002/2014RG000450 Talley L D. 2013. Closure of the global overturning circulation through the Indian, Pacific, and southern oceans: schematics and transports. Oceanography, 26(1): 80–97, doi: 10.5670/oceanog.2013.07 Thomas M, Sündermann J, Maier-Reimer E. 2001. Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophysical Research Letters, 28(12): 2457–2460, doi: 10.1029/2000GL012234 Tsujino H, Urakawa S, Nakano H, et al. 2018. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Modelling, 130: 79–139, doi: 10.1016/j.ocemod.2018.07.002 von Storch J S, Hertwig E, Lüschow V, et al. 2023. Open-ocean tides simulated by ICON-O, version icon-2.6. 6. Geoscience Model Development, 16(17): 5179–5196, doi: 10.5194/gmd-16-5179-2023 Wang Xiaowei, Peng Shiqiu, Liu Zhiyu, et al. 2016. Tidal mixing in the South China Sea: an estimate based on the internal tide energetics. Journal of Physical Oceanography, 46(1): 107–124, doi: 10.1175/JPO-D-15-0082.1 Yu Yi, Liu Hailong, Lan Jian. 2016. The influence of explicit tidal forcing in a climate ocean circulation model. Acta Oceanologica Sinica, 35(9): 42–50, doi: 10.1007/s13131-016-0931-9 Yu Zipeng, Liu Hailong, Lin Pengfei. 2017. A numerical study of the influence of tidal mixing on Atlantic Meridional Overturning Circulation (AMOC) simulation. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 1087–1100 Yu Yi, Liu Hailong, Lin Pengfei, et al. 2020. The impact of oceanic processes on the transient climate response: a tidal forcing experiment. Acta Oceanologica Sinica, 39(1): 52–62, doi: 10.1007/s13131-019-1466-0 Zuo Juncheng, Du Ling, Chen Meixiang, et al. 2018. Analysis Method of Ocean Hydrological Environmental Factors (in Chinese). Beijing, China: Science Press, 249–252