Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models

Zhigao Chen Yan Zong Zihao Wu Zhiyu Kuang Shengping Wang

Zhigao Chen, Yan Zong, Zihao Wu, Zhiyu Kuang, Shengping Wang. Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2343-6
Citation: Zhigao Chen, Yan Zong, Zihao Wu, Zhiyu Kuang, Shengping Wang. Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2343-6

doi: 10.1007/s13131-024-2343-6

Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models

Funds: The National Natural Science Foundation of China under contract Nos 42266006 and 41806114; the Jiangxi Provincial Natural Science Foundation under contract Nos 20232BAB204089 and 20202ACBL214019.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The essential structure of BP neural network.

    Figure  2.  Flow chart of PSO-BP algorithm.

    Figure  3.  Schematic diagram for the Longshort-term memory (LSTM) recurrent cell, adapted and reproduced from (Olah, 2015; Lees et al., 2022). These cells are repeated from the first timestep to the last one of the sequence. From one timestep to the next, ct captures the state of the system at time t. A series of gates, such as the forget gate (ft), the input gate (it), and the output gate (ot), protect and control the information flow from the input data xt to the cell state ct. $c't $ is the candidate cell-state value, which transformed through the tanh layer that are passed into ct base on the output of ot. The layers of neural networks: weights (w), biases (b), and activation functions (σ, tanh) correspond to the yellow layers are also shown in the diagram. The subscripts of σ indicate the three different gates in LSTM, which are a way to optionally let information through.

    Figure  4.  Schematic diagram for Seq2Seq model employed in this study. LSTM, Longshort-term memory

    Figure  5.  Area of study. Red circles indicate (C1, C2, and C3) the deploy locations of the Acoustic Doppler Current Profilers, and the dashed blue line represents the Xuliujing Section.

    Figure  6.  Time series of the discharges at Datong Station (a) and shapes of the Xuliujing Section on two dates in 2019 and 2020 (b). The discharge in Xuliujing Station is difficult to observe or estimate due to the large section and tide influence, so the discharge in Datong Station (shown in Fig. 5) is commonly regarded as the net discharge into the East China Sea. A boat-mounted single-beam echo sounder transducer (sonar) was used for bathymetric surveying at Xuliujing Section (Fig. 5) once a month.

    Figure  7.  The short-term discharge prediction by means of the four different models. Here discharge values of 12 h are used as input data and another 3 h ones are used as output data. The blue dotted line is the predicted discharge by harmonic analysis, the green dotted line is the predicted discharge by harmonic analysis PSO-BP neural network, the black dotted line is the predicted discharge by LSTM, the red dotted line is the predicted discharge by Seq2Seq, and the black line is the measured data.

    Figure  8.  Estimation error of four different models in short-term discharge prediction.

    Figure  9.  The middle-term discharge prediction. Here discharge values of 24 h are used as input data and another 6 h ones are used as output data.

    Figure  10.  Estimation error of four different models in middle-term discharge prediction.

    Figure  11.  The long-term discharge prediction. Here discharge values of 72 h are used as input data and another 24 h ones are used as output data.

    Figure  12.  Estimation error of four different models in long-term discharge prediction.

    Figure  13.  The correlation coefficient between the estimated tidal discharge and the measured values using the three different models. The data in a, b, and c are corresponding to the data in Figs 7, 9 and 11, respectively.

    Figure  14.  The half-hourly discharge estimation by the Seq2Seq models.

    Table  1.   The starting and ending time of the datasets

    Forecast duration (lead time) Starting and ending time (YYYY/MM/DD)
    Neap tide Spring tide Middle tide
    Short term (3 h) 2020/10/01–2020/11/10 2020/10/01–2020/11/18 2020/10/01–2020/11/29
    Middle term (6 h) 2020/08/01–2020/11/10 2020/08/01–2020/11/18 2020/08/01–2020/11/29
    Long term (24 h) 2020/01/01–2020/11/10 2020/01/01–2020/11/18 2020/01/01–2020/11/29
    Note: All datasets are sampled at half-hour intervals.
    下载: 导出CSV

    Table  2.   Tidal constituents at Xuliujing with amplitudes greater than 8000 m3/s

    Tide
    constituent
    Frequency/
    (cycle·h–1)
    Amplitude
    (m3·s–1)
    Phase/(°) Signal-to-noise
    ratio
    M2 0.080511 63408 216.67 220
    S2 0.083333 28935 267.85 46
    M4 0.161023 15747 233.32 36
    MS4 0.163845 12991 298.97 25
    K1 0.041781 8642 24.510 330
    下载: 导出CSV

    Table  3.   Parameter setting of PSO algorithm

    Parameters Setting
    Swarm size 30
    Inertia weight 0.5
    Personal learning factor 4.494
    Social learning factor 4.494
    Maximum velocity 1.0
    Number of iterations 200
    Fitness function root mean square error
    下载: 导出CSV

    Table  4.   Parameter Setting of LSTM model

    Parameters Setting
    Short term Middle term Long term
    Hidden size / 128 /
    Num layers / 1 /
    Input dimension / 3 /
    Input length 24 48 144
    Output dimension / 1 /
    Output length 6 12 48
    Learning rate / 0.01 /
    Target error / 0.001 /
    Batch size / 256 /
    Epochs / 200 /
    Regularization / 0.001 /
    Activation / ReLU /
    Optimizer / Adam /
    Note: For different forecast durations, only the length of the input and output length is different. / indicats xxx.
    下载: 导出CSV
  • Amanambu A C, Mossa J, Chen Yin-Hsuen. 2022. Hydrological drought forecasting using a deep transformer model. Water, 14(22): 3611
    Anshuka A, Chandra R, Buzacott A J V, et al. 2022. Spatio temporal hydrological extreme forecasting framework using LSTM deep learning model. Stochastic Environmental Research and Risk Assessment, 36(10): 3467–3485
    Bai Longhu, Xu Hang. 2021. Accurate estimation of tidal level using bidirectional long short-term memory recurrent neural network. Ocean Engineering, 235: 108765
    Cai Huayang, Li Bo, Garel E, et al. 2023. A data-driven model to quantify the impact of river discharge on tide-river dynamics in the Yangtze River estuary. Journal of Hydrology, 620: 129411
    Cho K, Van Merriënboer B, Gulcehre C, et al. 2014. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha The State of Qatar: ACL, 1724–1734
    Dennis R E, Long E E. 1971. A user’s guide to a computer program for harmonic analysis of data at tidal frequencies. NOAA NOS, 41: 3–11
    Foreman M G G. 1977. Manual for tidal heights analysis and prediction. Pacific Marine Science Report. Sidney, B C, Canada: Institute of Ocean Sciences, Patricia Bay, 77–10
    Foreman M G G, Henry R F. 1989. The harmonic analysis of tidal model time series. Advances in Water Resources, 12(3): 109–120
    Gan Min, Chen Yongping, Pan Haidong, et al. 2024. Study on the spatiotemporal variation of the Yangtze estuarine tidal species. Estuarine, Coastal and Shelf Science, 298: 108637
    Harris D L, Pore N A, Cummings R A. 2015. Tide and tidal current prediction by high speed digital computer. The International Hydrographic Review, 42(1): 95–103
    Hidayat H, Hoitink A J F, Sassi M G, et al. 2014. Prediction of discharge in a tidal river using artificial neural networks. Journal of Hydrologic Engineering, 19(8): 04014006
    Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735–1780
    Jain M, Saihjpal V, Singh N, et al. 2022. An overview of variants and advancements of PSO algorithm. Applied Sciences, 12(17): 8392
    Ji Zhong, Xiong Kailin, Pang Yanwei, et al. 2020. Video summarization with attention-based encoder–decoder networks. IEEE Transactions on Circuits and Systems for Video Technology, 30(6): 1709–1717
    Kao I-Feng, Zhou Yanlai, Chang Li-Chiu, et al. 2020. Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting. Journal of Hydrology, 583: 124631
    Kennedy J, Eberhart R. 1995. Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks. Perth: IEEE, 1942–1948
    Kratzert F, Herrnegger M, Klotz D, et al. 2019. NeuralHydrology – interpreting LSTMs in hydrology. In: Samek W, Montavon G, Vedaldi A, et al, eds. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Cham: Springer, 347–362
    Kratzert F, Klotz D, Brenner C, et al. 2018. Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11): 6005–6022
    Lee T L. 2004. Back-propagation neural network for long-term tidal predictions. Ocean Engineering, 31(2): 225–238
    Lees T, Reece S, Kratzert F, et al. 2022. Hydrological concept formation inside long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 26(12): 3079–3101
    Matte P, Jay D A, Zaron E D. 2013. Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides. Journal of Atmospheric and Oceanic Technology, 30(3): 569–589
    Olah C. 2015. Understanding LSTM networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/[2015-08]
    Pan Haidong, Jiao Shengyi, Xu Tengfei, et al. 2022. Investigation of tidal evolution in the Bohai Sea using the combination of satellite altimeter records and numerical models. Estuarine, Coastal and Shelf Science, 279: 108140
    Pan Haidong, Lv Xianqing, Wang Yingying, et al. 2018. Exploration of tidal-fluvial interaction in the columbia river estuary using S_TIDE. Journal of Geophysical Research: Oceans, 123(9): 6598–6619
    Pan Haidong, Xu Tengfei, Wei Zexun. 2023. A modified tidal harmonic analysis model for short-term water level observations. Ocean Modelling, 186: 102251
    Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8): 929–937
    Rumelhart D E, Hinton G E, Williams R J. 1986. Learning representations by back-propagating errors. Nature, 323(6088): 533–536
    Sahoo B B, Jha R, Singh A, et al. 2019. Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophysica, 67(5): 1471–1481
    Shin M J, Moon S H, Kang K G, et al. 2020. Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network. Hydrology, 7(3): 64
    Sutskever I, Vinyals O, Le Q V. 2014. Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 3104–3112
    Yin Hanlin, Guo Zilong, Zhang Xiuwei, et al. 2021a. Runoff predictions in ungauged basins using sequence-to-sequence models. Journal of Hydrology, 603: 126975
    Yin Hanlin, Zhang Xiuwei, Wang Fandu, et al. 2021b. Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model. Journal of Hydrology, 598: 126378
    Yuan Xiaohui, Chen Chen, Lei Xiaohui, et al. 2018. Monthly runoff forecasting based on LSTM–ALO model. Stochastic Environmental Research and Risk Assessment, 32(8): 2199–2212
    Zhang E F, Savenije H H G, Chen S L, et al. 2012. An analytical solution for tidal propagation in the Yangtze Estuary, China. Hydrology and Earth System Sciences, 16(9): 3327–3339
    Zhang Min, Townend I, Zhou Yunxuan, et al. 2016. Seasonal variation of river and tide energy in the Yangtze Estuary, China. Earth Surface Processes and Landforms, 41(1): 98–116
    Zhao Jianhu, Chen Zhigao, Zhang Hongmei, et al. 2016. Multiprofile discharge estimation in the tidal reach of Yangtze Estuary. Journal of Hydraulic Engineering, 142(12): 04016056
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  79
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 录用日期:  2024-04-27
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回