Simulating the evolution of focused waves by a two-layer Boussinesq-type model

Ping Wang Zhongbo Liu Kezhao Fang Wenfeng Zou Xiangke Dong Jiawen Sun

Ping Wang, Zhongbo Liu, Kezhao Fang, Wenfeng Zou, Xiangke Dong, Jiawen Sun. Simulating the evolution of focused waves by a two-layer Boussinesq-type model[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2321-z
Citation: Ping Wang, Zhongbo Liu, Kezhao Fang, Wenfeng Zou, Xiangke Dong, Jiawen Sun. Simulating the evolution of focused waves by a two-layer Boussinesq-type model[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2321-z

doi: 10.1007/s13131-024-2321-z

Simulating the evolution of focused waves by a two-layer Boussinesq-type model

Funds: The National Science Foundation under contract Nos 52171247, 51779022, 52071057, and 51709054.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Wave propagates over mildly sloping topographies.

    Figure  2.  Time history of surface elevation at different locations for Case B50.

    Figure  3.  Time history of surface elevation at different locations for Case D50.

    Figure  4.  Time history of surface elevation at different locations for Case D55.

    Figure  5.  Comparison of the calculated focused wave elevation with the experimental results of Baldock et al. (1996).

    Figure  6.  Comparisons between the calculated wave elevation at four locations and the experimental results of Baldock et al. (1996)

    Figure  7.  Comparisons of velocity profiles between modeled and experimental data of Baldock et al. (1996).

    Figure  8.  The comparisons of the focused crest.

    Figure  9.  Horizontal velocity beneath the focused crest.

  • Ai Congfang, Ding Weiye, Jin Sheng. 2014. A general boundary-fitted 3D non-hydrostatic model for nonlinear focusing wave groups. Ocean Engineering, 89: 134–145, doi: 10.1016/j.oceaneng.2014.08.002
    Baldock T E, Swan C. 1996. Extreme waves in shallow and intermediate water depths. Coastal Engineering, 27(1-2): 21–46, doi: 10.1016/0378-3839(95)00040-2
    Baldock T E, Swan C, Taylor P H. 1996. A laboratory study of nonlinear surface waves on water. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 354(1707): 649–676
    Chawla A, Kirby J T. 2000. A source function method for generation of waves on currents in Boussinesq models. Applied Ocean Research, 22(2): 75–83, doi: 10.1016/S0141-1187(00)00005-5
    Ducrozet G, Bonnefoy F, Le Touzé D, et al. 2012. A modified high-order spectral method for wavemaker modeling in a numerical wave tank. European Journal of Mechanics-B/Fluids, 34: 19–34, doi: 10.1016/j.euromechflu.2012.01.017
    Fang Kezhao, Liu Zhongbo, Sun Jiawen, et al. 2020. Development and validation of a two-layer Boussinesq model for simulating free surface waves generated by bottom motion. Applied Ocean Research, 94: 101977, doi: 10.1016/j.apor.2019.101977
    Fang Kezhao, Liu Zhongbo, Wang Ping, et al. 2022. Modeling solitary wave propagation and transformation over complex bathymetries using a two-layer Boussinesq model. Ocean Engineering, 265: 112549, doi: 10.1016/j.oceaneng.2022.112549
    Fuhrman D R, Madsen P A. 2010. Numerical simulation of extreme events from focused directionally spread wavefields. In: Coastal Engineering-30th International Conference. San Diego: World Scientific, 772–781
    Gobbi M F, Kirby J T. 1999. Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Engineering, 37(1): 57–96, doi: 10.1016/S0378-3839(99)00015-0
    Haver S, Andersen O J. 2000. Freak waves: rare realizations of a typical population or typical realizations of a rare population?. In: Proceedings of the 10th International Offshore and Polar Engineering Conference. Seattle, USA: ISOPE,123–130
    Hsiao S C, Lynett P, Hwung H H, et al. 2005. Numerical simulations of nonlinear short waves using a multilayer model. Journal of Engineering Mechanics, 131(3): 231–243, doi: 10.1061/(ASCE)0733-9399(2005)131:3(231
    Johannessen T B, Swan C. 2001. A laboratory study of the focusing of transient and directionally spread surface water waves. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 457(2008): 971–1006
    Kharif C, Pelinovsky E. 2003. Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics-B/Fluids, 22(6): 603–634, doi: 10.1016/j.euromechflu.2003.09.002
    Kirby J T, Wei G, Chen Qin, et al. 1998. FUNWAVE 1.0: fully nonlinear Boussinesq wave model-documentation and user’s manual. University of Delaware, Newark
    Li Jinxuan, Liu Shuxue. 2015. Focused wave properties based on a high order spectral method with a non-periodic boundary. China Ocean Engineering, 29(1): 1–16, doi: 10.1007/s13344-015-0001-7
    Li Mengyu, Zhao Xizeng, Ye Zhouteng, et al. 2018. Generation of regular and focused waves by using an internal wave maker in a CIP-based model. Ocean Engineering, 167: 334–347, doi: 10.1016/j.oceaneng.2018.08.048
    Liu Shuxue, Hong Qiying. 2004. The generation method of three-dimensional focusing wave and its properties. Haiyang Xuebao (in Chinese), 26(6): 133–142
    Liu Zhongbo, Fang Kezhao. 2016. A new two-layer Boussinesq model for coastal waves from deep to shallow water: Derivation and Analysis. Wave Motion, 67: 1–14, doi: 10.1016/j.wavemoti.2016.07.002
    Liu Zhongbo, Fang Kezhao. 2019. Numerical verification of a two-layer Boussinesq-type model for surface gravity wave evolution. Wave Motion, 85: 98–113, doi: 10.1016/j.wavemoti.2018.11.007
    Liu Zhongbo, Fang Kezhao, Cheng Y Z. 2018. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive surface waves over a mildly sloping seabed. Journal of Fluid Mechanics, 842: 323–353, doi: 10.1017/jfm.2018.99
    Liu Zhongbo, Fang Kezhao, Sun Jiawen. 2019. A multi-layer Boussinesq-type model with second-order spatial derivatives: Theoretical analysis and numerical implementation. Ocean Engineering, 191: 106545, doi: 10.1016/j.oceaneng.2019.106545
    Ma Yuxiang, Dong Guohai, Liu Shuxue, et al. 2010. Laboratory study of unidirectional focusing waves in intermediate depth water. Journal of Engineering Mechanics, 136(1): 78–90, doi: 10.1061/(ASCE)EM.1943-7889.0000076
    Madsen P A, Bingham H B, Liu Hua. 2002. A new Boussinesq method for fully nonlinear waves from shallow to deep water. Journal of Fluid Mechanics, 462: 1–30, doi: 10.1017/S002211200 2008467
    Madsen P A, Murray R, Sørensen O R. 1991. A new form of the Boussinesq equations with improved linear dispersion characteristics. Coastal Engineering, 15(4): 371–388, doi: 10.1016/0378-3839(91)90017-B
    Ning Dezhi, Teng Bin, Eatock Taylor R, et al. 2008. Numerical simulation of non-linear regular and focused waves in an infinite water-depth. Ocean Engineering, 35(8-9): 887–899, doi: 10.1016/j.oceaneng.2008.01.015
    Ning Dezhi, Zang Jun, Liu Shuxue, et al. 2009. Free-surface evolution and wave kinematics for nonlinear uni-directional focused wave groups. Ocean Engineering, 36(15-16): 1226–1243, doi: 10.1016/j.oceaneng.2009.07.011
    Nwogu O. 1993. Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(6): 618–638
    Smith S F, Swan C. 2002. Extreme two-dimensional water waves: an assessment of potential design solutions. Ocean Engineering, 29(4): 387–416, doi: 10.1016/S0029-8018(01)00028-2
    Wei Ge, Kirby J T, Grilli S T, et al. 1995. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294: 71–92, doi: 10.1017/S0022112095002813
    Wei Ge, Kirby J T, Sinha A. 1999. Generation of waves in Boussinesq models using a source function method. Coastal Engineering, 36(4): 271–299, doi: 10.1016/S0378-3839(99)00009-5
    Zhao Xizeng, Sun Zhaochen, Liang Shuxiu. 2009. Efficient focusing models for generation of freak waves. China Ocean Engineering, 23(3): 429–440
    Zhao Binbin, Zheng Kun, Duan Wenyang, et al. 2020. Time domain simulation of focused waves by high-level irrotational Green–Naghdi equations and harmonic polynomial cell method. European Journal of Mechanics-B/Fluids, 82: 83–92, doi: 10.1016/j.euromechflu.2020.02.006
  • 加载中
计量
  • 文章访问数:  29
  • HTML全文浏览量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-30
  • 录用日期:  2024-01-01
  • 网络出版日期:  2024-04-26

目录

    /

    返回文章
    返回