Morphological, phylogenetic and metabolite profile of Prorocentrum clipeus, a newly recorded epiphytic dinoflagellate in the northern Yellow Sea

Ruifang Wang Mengmeng Tong Shiwen Zhou Junjie Zheng Wenguang Zhang Xinfeng Dai Douding Lu Jiarong Hu Tianze Leng Qinglin Mu Zhongyong Yan Jiangning Zeng Pengbin Wang

Ruifang Wang, Mengmeng Tong, Shiwen Zhou, Junjie Zheng, Wenguang Zhang, Xinfeng Dai, Douding Lu, Jiarong Hu, Tianze Leng, Qinglin Mu, Zhongyong Yan, Jiangning Zeng, Pengbin Wang. Morphological, phylogenetic and metabolite profile of Prorocentrum clipeus, a newly recorded epiphytic dinoflagellate in the northern Yellow Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2302-2
Citation: Ruifang Wang, Mengmeng Tong, Shiwen Zhou, Junjie Zheng, Wenguang Zhang, Xinfeng Dai, Douding Lu, Jiarong Hu, Tianze Leng, Qinglin Mu, Zhongyong Yan, Jiangning Zeng, Pengbin Wang. Morphological, phylogenetic and metabolite profile of Prorocentrum clipeus, a newly recorded epiphytic dinoflagellate in the northern Yellow Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2302-2

doi: 10.1007/s13131-024-2302-2

Morphological, phylogenetic and metabolite profile of Prorocentrum clipeus, a newly recorded epiphytic dinoflagellate in the northern Yellow Sea

Funds: The National Natural Science Foundation of China under contract Nos 41706191 and 41961144013; the Natural Science Foundation of Zhejiang Province under contract No. LY20D060004; the National Natural Science Foundation of China under contract Nos 41676111, 41876139 and 41906140; Program of Bureau of Science and Technology of Zhoushan grant under contract No. 2019C81031 and Basic Public Welfare Research Project of Zhejiang Province under contract No. LGC22B050032.
More Information
    Corresponding author: E-mail: jiangningz@126.com; algae@sio.org.cn
  • # Ruifang Wang and Mengmeng Tong contributed equally to this work.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    # Ruifang Wang and Mengmeng Tong contributed equally to this work.
  • Figure  1.  Light microscopy (LM) and scanning electron microscopy (SEM) images of P. clipeus DF128. LM, right thecal view showing the cell shape, the large nucleus (N) posterior (a). Laser scanning confocal microscopy images of P. clipeus (b - d). Epifluorescence image showing the pyrenoid (Py) and radial arrangement of chloroplasts (Chl) (b). Sybr Green stained cell showing the shape of the nucleus (N) (c). Epifluorescence image of the thecal valve of the cell (d). SEM. The right valve view shows that the cell shape is asymmetrical and round (e). SEM. Left valve view showing the smooth thecal surface with a radial pore pattern (f). SEM. The intercalary band is wide and has transverse striation (g). SEM. The cell is shown in the right lateral view, with a wide arc-shaped periflagellar area. Ridge (asterisk), wing-shaped protrusion (arrow), curved projections (arrowhead), detail of the nine platelets (h and i). Scale bars in a-g: 10 μm, h and i: 5 μm.

    Figure  2.  Maximum likelihood tree of 33 SSU rDNA sequences and 1691 positions. Alexandrium tamarense was included as an outgroup. The best model, chosen by MrModel-Test2.3, was GTR+I+G. The support values shown were obtained by maximum likelihood and Bayesian inference. Only values > 50% (ML) and 0.50 (BI) are shown. A new sequence published in this study is displayed in bold (OP601437).

    Figure  3.  Maximum likelihood tree of 32 ITS1–5.8S–ITS2 sequences and 623 positions. Karenia brevis was included as an outgroup. The best model, chosen by MrModel-Test2.3, was GTR+I+G. The support values shown were obtained by maximum likelihood and Bayesian inference. Only values > 50% (ML) and 0.50 (BI) are shown. A new sequence published in this study is displayed in bold (OP601439).

    Figure  4.  Maximum likelihood tree of 37 LSU rDNA sequences and 697 positions. Alexandrium tamarense was included as an outgroup. The best model, chosen by MrModel-Test2.3, was GTR+I+G. The support values shown were obtained by maximum likelihood and Bayesian inference. Only values > 50% (ML) and 0.50 (BI) are shown. A new sequence published in this study is displayed in bold (OP601441).

    Figure  5.  Extracted ion chromatograms (EICs) of the procedure blank; P. clipeus DF128 intracellular and extracellular extracts; and OA, DTX1 and DTX2 standards (100 ng/mL) in negative ESI mode using a Sciex QTRAP 5 500 system.

    Figure  6.  The EICs of the procedural blank, P. clipeus DF128 intracellular and extracellular extracts, and standard PTX2 (100 ng/mL) in positive ESI mode were determined using a Sciex QTRAP 5 500 system.

    Figure  7.  Enhanced molecular networks obtained from the positive ion mode (A) and negative ion mode (B) mass spectra using MolNetEnhancer showing different molecular families/clusters of the pooled metabolites in the extracts of P. clipeus DF128. The node colors represent the classes of putatively annotated metabolites matched in the GNPS libraries. Single nodes indicate the absence of MS/MS fragments shared with any other compound.

    Figure  8.  Global occurrence of P. clipeus (data from this paper indicated by double circle marker; data from published literature and OBIS from 2000 to 2019 in black). The figure was created using Ocean Data View, version 5.7.1(Schlitzer, 2023).

    Table  1.   Primer sequences used to amplify the SSU, ITS and LSU rDNA regions in Prorocentrum species

    Name Target sequence Direction Sequence (5’ to 3’) Reference
    18F23 SSU Forward GGTTGATCCTGCCAGTAG Olmos-Soto et al. (2002)
    18R1780 SSU Reverse GTTCACCTACGGAAACCTTG Fu et al. (2008)
    SR4-F 548-566 SSU Forward AGGGCAAGTCTGGTGCCAG Hong et al. (2008)
    SR5kawR 630-611 SSU Reverse ACTACGAGCTTTTTAACCGC Hong et al. (2008)
    SR6-F 891-910 SSU Forward GTCAGAGGTGAAATTCTTGG Hong et al. (2008)
    SR7-R 951-932 SSU Reverse TCCTTGGCAAATGCTTTCGC Hong et al. (2008)
    SR9-R 1286-1267 SSU Reverse AACTAAGAACGGCCATGCAC Hong et al. (2008)
    ITS1-F ITS1-5.8S-ITS2 Forward TCCGTAGGTGAACCTGCGG White et al. (1990)
    ITS4-R ITS1-5.8S-ITS2 Reverse TCCTCCGCTTATTGATATGC White et al. (1990)
    DIR LSU Forward ACCCGCTGAATTTAAGCATA Scholin et al. (1994)
    D2C LSU Reverse CCTTGGTCCGTGTTTCAAGA Scholin et al. (1994)
    下载: 导出CSV

    Table  2.   Mass spectrometric parameters and retention times of the OA, DTX1, DTX2 and PTX2 standards *= Quantification ion; ^= Confirmation ion

    Compound Molecular
    formula
    Precursor
    ion type
    Precursor
    ion (m/z)
    Fragment
    ion (m/z)
    DP (V) EP (V) CE (eV) CXP (V) Retention
    time (min)
    OA C44H68O13 [M − H] 803.5 255.2* −70 −10 −60 −12 7.45
    113.1^ −70 −10 −75 −12
    DTX1 C45H70O13 [M − H] 817.5 255.2* −110 −10 −68 −12 8.57
    113.1^ −110 −10 −94 −12
    DTX2 C44H68O13 [M − H] 803.5 255.2* −70 −10 −60 −12 7.72
    113.1^ −70 −10 −75 −12
    PTX2 C47H70O14 [M + NH4] + 876.4 823.5* 150 10 27 15 7.94
    805.5^ 150 10 35 15
    下载: 导出CSV

    Table  4.   LSU rDNA sequence differences (above the diagonal line) and similarities (below the diagonal line) among P. clipeus, P. compressum and P. tsawwassenense based on a total of 697 positions

    Species GenBank no/Strains, origin DF128 IFR459 IFR470 PCPA01 IFR456
    P. clipeus OP601441/DF128, China 39 39 95 140
    P. clipeus JX912174/IFR459, France 94.4% 0 104 121
    P. clipeus JX912175/IFR470, France 94.4% 100% 104 121
    P. compressum AY259169/PCPA01, Australia 86.37% 85.08% 85.08% 117
    P. tsawwassenense JX912182/IFR456, France 79.91% 82.64% 82.64% 83.21%
    下载: 导出CSV

    Table  3.   Comparison of the morphological features of Prorocentrum clipeus and similar benthic Prorocentrum species

    Characteristics P. clipeus (this study) P. clipeus1 P. clipeus2 P. compressum5 P. tsawwassenense7 P. panamense8
    Cell shape Nearly round Nearly round Nearly circular Ovate to rotundate Oval Heart-shaped
    Cell size
    Length (µm) 37.8-41.3 54-55 37-55 (37-44)3; (30-35)4 30-50 (35-50)6 40-55 46-52 (52.3-55.6)9
    Width (µm) 35.7-39.7 50-52.5 32-36.54 C. 25(20-30)6 30-47.5 43-46 (48.3-50.7)9
    L/W 1.00-1.09 1.05-1.08 ? ? 1.06-1.139
    Periflagellar area
    Shape Wide U-shaped Wide arc-shaped Wide U-shaped (arc) Slight depression Wide U-shaped “linear”
    Collar on left plate Yes Yes Yes No? Yes No
    Ridge on right plate Yes Yes Yes? No No No
    Wing-shaped spine No No No Yes “Yes” protrusions No
    Protrusions
    Only one Yes “Yes” apical spine Yes ? No
    More than one ? 5 (6)2 No
    Platelet list(s) No No No ? No No
    No. of platelets 9 10 9 ? 7-9 (8-10)2 ? 99
    Flagellar pore Yes Yes Yes ? Yes Yes
    Accessory pore Yes Yes? Yes? ? Yes2 Yes
    Theca ornamentation Smooth Smooth Smooth Foveate6 Smooth Areolate (reticulate-foveate)2,9
    Pore pattern Yes, some cell visible pore pattern or radial rows No, scattered No visible pore pattern or radial rows of small pores (radial rows)3 No, scattered (rows of pores)6 Radial rows
    Two apical rows
    No, scattered on valves, mostly around
    Platelet pores Yes Yes Yes? ? No No
    Marginal pores No No ? ? Yes ? No5
    Plate center Devoid Devoid ? Yes? Devoid ? (Devoid in some cells)2
    Large pores (µm) No No ? ? 0.3-0.5 No
    Small pores (µm) Approximately 0.15 µm in diameter Approximately 0.12 µm in diameter ? ? 0.09-0.17 0.15
    Intercalary band Transverse striation Smooth ? (horiz. str.)3 ? Transverse and horizontal striation Transversally striated
    Pyrenoid Yes (LSCM) Probably yes (LM) ? ? Yes (TEM) Yes
    Nucleus (shape and position) Large kidney-shaped, Posterior Large kidney-shaped, Posterior Kidney-shaped, Posterior ? Round to oval, Posterior U-shaped, Posterior
    In the above table, the list of morphological features was made based on Hoppenrath et al. (2013). It is listed here with some modifications. Where notifications in the table indicate: ? = no data available; …? = not mentioned in the text, inferred from images. Literature: 1Hoppenrath (2000); 2Hoppenrath et al. (2013); 3Murray (2003), 4Shah et al. (2013); 5Dodge (1975); 6Gul and Saifullah (2011); 7Hoppenrath and Leander (2008); 8Grzebyk et al. (1998); 9Luo et al. (2017).
    下载: 导出CSV
  • Andersen R A. 2005. Algal Culturing Techniques. Oxford: Elsevier Academic Press, 578
    Arteaga-Sogamoso E, Rodríguez F, Amato A, et al. 2023. Morphology and phylogeny of Prorocentrum porosum sp. nov. (Dinophyceae): a new benthic toxic dinoflagellate from the Atlantic and Pacific Oceans. Harmful Algae, 121: 102356, doi: 10.1016/j.hal.2022.102356
    Blanco J, Moroño Á, Fernández M L. 2005. Toxic episodes in shellfish, produced by lipophilic phycotoxins: an overview. Galician: Revista Galega dos Recursos Mariños Galician Journal of Marine Resources, 1: 1–70
    Boopathi T, Faria D G, Cheon J Y, et al. 2015. Implications of high molecular divergence of nuclear rRNA and phylogenetic structure for the dinoflagellate Prorocentrum (Dinophyceae, Prorocentrales). Journal of Eukaryotic Microbiology, 62(4): 519–531, doi: 10.1111/jeu.12206
    Borsato G T, Salgueiro F, De’Carli G A L, et al. 2023. Taxonomy and abundance of epibenthic Prorocentrum (Dinophyceae) species from the tropical and subtropical Southwest Atlantic Ocean including a review of their global diversity and distribution. Harmful Algae, 127: 102470, doi: 10.1016/j.hal.2023.102470
    Chomérat N, Bilien G, Zentz F. 2019. A taxonomical study of benthic Prorocentrum species (Prorocentrales, Dinophyceae) from Anse Dufour (Martinique Island, eastern Caribbean Sea). Marine Biodiversity, 49(3): 1299–1319, doi: 10.1007/s12526-018-0913-6
    Chomérat N, Saburova M, Bilien G, et al. 2012. Prorocentrum bimaculatum sp. nov. (Dinophyceae, Prorocentrales), a new benthic dinoflagellate species from Kuwait (Arabian Gulf). Journal of Phycology, 48(1): 211–221, doi: 10.1111/j.1529-8817.2011.01102.x
    Chomérat N, Sellos D Y, Zentz F, et al. 2010. Morphology and molecular phylogeny of Prorocentrum consutum sp. nov. (Dinophyceae), a new benthic dinoflagellate from south brittany (northwestern France). Journal of Phycology, 46(1): 183–194, doi: 10.1111/j.1529-8817.2009.00774.x
    Chomérat N, Zentz F, Boulben S, et al. 2011. Prorocentrum glenanicum sp. nov. and Prorocentrum pseudopanamense sp. nov. (Prorocentrales, Dinophyceae), two new benthic dinoflagellate species from South Brittany (northwestern France). Phycologia, 50(2): 202–214, doi: 10.2216/10-12.1
    Dodge J D. 1975. The Prorocentrales (Dinophyceae). II. Revision of the taxonomy within the genus Prorocentrum. Botanical Journal of the Linnean Society, 71(2): 103–125, doi: 10.1111/j.1095-8339.1975.tb02449.x
    Ehrenberg C. 1834. Dritter beitrag zur erkenntniss grosser organisation in der richtung des kleinsten raumes. Berlin: Abhandlungen der Königlichen Akademie der Wissenschaften zu, 1833: 145–336
    Ernst M, Kang K B, Caraballo-Rodríguez A M, et al. 2019. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites, 9(7): 144, doi: 10.3390/metabo9070144
    European Food Safety Authority. 2008. Marine biotoxins in shellfish‐okadaic acid and analogues‐scientific opinion of the panel on contaminants in the food chain. European Food Safety Authority Journal, 6(1): 589, doi: 10.2903/j.efsa.2008.589
    Faust M A, Vandersea M W, Kibler S R, et al. 2008. Prorocentrum levis, a new benthic species (Dinophyceae) from a mangrove island, Twin Cays, Belize. Journal of Phycology, 44(1): 232–240, doi: 10.1111/j.1529-8817.2007.00450.x
    Freudenthal A, Jijina J. 1988. Potential hazards of Dinophysis to consumers and shellfisheries. Journal of Shellfish Research, 7(1): 157–158
    Fu X H, Meng F L, Hu Y, et al. 2008. Candida albicans, a distinctive fungal model for cellular aging study. Aging Cell, 7(5): 746–757, doi: 10.1111/j.1474-9726.2008.00424.x
    Glibert P M, Burkholder J M, Kana T M. 2012. Recent insights about relationships between nutrient availability, forms, and stoichiometry, and the distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum species. Harmful Algae, 14: 231–259, doi: 10.1016/j.hal.2011.10.023
    Gómez F, Gourvil P, Li T C, et al. 2023. Molecular phylogeny of the spiny‐surfaced species of the dinoflagellate Prorocentrum with the description of P. thermophilum sp. nov. and P. criophilum sp. nov. (Prorocentrales, Dinophyceae). Journal of Phycology, 59(1): 70–86, doi: 10.1111/jpy.13298
    Grzebyk D, Sako Y, Berland B. 1998. Phylogenetic analysis of nine species of Prorocentrum (Dinophyceae) inferred from 18S ribosomal DNA sequences, morphological comparisons, and description of Prorocentrum panamensis, sp. nov. Journal of Phycology, 34(6): 1055–1068, doi: 10.1046/j.1529-8817.1998.341055.x
    Gul S, Saifullah S M. 2011. The dinoflagellate genus Prorocentrum (Prorocentrales, Prorocentraceae) from the north Arabian sea. Pakistan Journal of Botany, 43(6): 3061–3065
    Gurevich A, Mikheenko A, Shlemov A, et al. 2018. Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra. Nature Microbiology, 3(3): 319–327, doi: 10.1038/s41564-017-0094-2
    Hall T A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95–98
    Han M S, Wang Pengbin, Kim J H, et al. 2016. Morphological and molecular phylogenetic position of Prorocentrum micans sensu stricto and description of Prorocentrum koreanum sp. nov. from southern coastal waters in Korea and Japan. Protist, 167(1): 32–50, doi: 10.1016/j.protis.2015.12.001
    Henrichs D W, Scott P S, Steidinger K A, et al. 2013. Morphology and phylogeny of Prorocentrum texanum sp. nov. (Dinophyceae): a new toxic dinoflagellate from the Gulf of Mexico coastal waters exhibiting two distinct morphologies. Journal of Phycology, 49(1): 143–155, doi: 10.1111/jpy.12030
    Holman J D, Tabb D L, Mallick P. 2014. Employing ProteoWizard to convert raw mass spectrometry data. Current Protocols in Bioinformatics, 46(1): 13.24. 1–13.24. 9, doi: 10.1002/0471250953.bi1324s46
    Hong D D, Thu N T H, Nam H S, et al. 2008. The phylogenetic tree of Alexandrium, Prorocentrum and Pseudo-nitzschia of harmful and toxic algae in vietnam coastal waters based on sequences of 18s rDNA, ITS1-5.8S-ITS2 gene fragments and single cell-PCR method. Marine Research in Indonesia, 32(2): 203–218, doi: 10.14203/mri.v32i2.456
    Hoppenrath M. 2000. A new marine sand-dwelling Prorocentrum species, P. clipeus sp. nov. (Dinophyceae, Prorocentrales) from Helgoland, German Bight, North Sea. European Journal of Protistology, 36(1): 29–33, doi: 10.1016/S0932-4739(00)80019-X
    Hoppenrath M, Chomérat N, Horiguchi T, et al. 2013. Taxonomy and phylogeny of the benthic Prorocentrum species (Dinophyceae)—a proposal and review. Harmful Algae, 27: 1–28, doi: 10.1016/j.hal.2013.03.006
    Hoppenrath M, Leander B S. 2008. Morphology and molecular phylogeny of a new marine sand-dwelling Prorocentrum species, P. tsawwassenense (Dinophyceae, Prorocentrales), from British Columbia, Canada. Journal of Phycology, 44(2): 451–466, doi: 10.1111/j.1529-8817.2008.00483.x
    Hoppenrath M, Murray S A, Chomérat N, et al. 2014. Marine Benthic Dinoflagellates-Unveiling Their Worldwide Biodiversity. Stuttgart: Senckenberg, 137–138
    Keller M D, Selvin R C, Claus W, et al. 1987. Media for the culture of oceanic ultraphytoplankton. Journal of Phycology, 23(4): 633–638, doi: 10.1111/j.1529-8817.1987.tb04217.x
    Jackson A E, Marr J C, Mclachlan J L. 1993. The production of diarrhetic shellfish toxins by an isolate of Prorocentrum lima from Nova Soctia, Canada. In: Smayda TJ, Shimizu Y, eds. Toxic Phytoplankton Blooms in the Sea. Newport: Elsevier, 513–518
    Lim Z F, Luo Zhaohe, Lee L K, et al. 2019. Taxonomy and toxicity of Prorocentrum from Perhentian Islands (Malaysia), with a description of a non-toxigenic species Prorocentrum malayense sp. nov. (Dinophyceae). Harmful Algae, 83: 95–108, doi: 10.1016/j.hal.2019.01.007
    Luo Zhaohe, Zhang Hua, Krock B, et al. 2017. Morphology, molecular phylogeny and okadaic acid production of epibenthic Prorocentrum (Dinophyceae) species from the northern South China Sea. Algal Research, 22: 14–30, doi: 10.1016/j.algal.2016.11.020
    Mohimani H, Gurevich A, Shlemov A, et al. 2018. Dereplication of microbial metabolites through database search of mass spectra. Nature Communications, 9(1): 4035, doi: 10.1038/s41467-018-06082-8
    Murray S. 2003. Diversity and phylogenetics of sand-dwelling dinoflagellates from southern Australia [dissertation]. Sydney: University of Sydney
    Murray S, Nagahama Y, Fukuyo Y. 2007. Phylogenetic study of benthic, spine-bearing prorocentroids, including Prorocentrum fukuyoi sp. nov. Phycological Research, 55(2): 91–102, doi: 10.1111/j.1440-1835.2007.00452.x
    Nascimento S M, Mendes M C Q, Menezes M, et al. 2017. Morphology and phylogeny of Prorocentrum caipirignum sp. nov. (Dinophyceae), a new tropical toxic benthic dinoflagellate. Harmful Algae, 70: 73–89, doi: 10.1016/j.hal.2017.11.001
    Nothias L F, Petras D, Schmid R, et al. 2020. Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 17(9): 905–908, doi: 10.1038/s41592-020-0933-6
    Olmos-Soto J, Paniagua-Michel J, Contreras R, et al. 2002. Molecular identification of β-carotene hyper-producing strains of Dunaliella from saline environments using species-specific oligonucleotides. Biotechnology Letters, 24(5): 365–369, doi: 10.1023/A:1014516920887
    Prabowo D A, Agusti S. 2019. Free-living dinoflagellates of the central Red Sea, Saudi Arabia: Variability, new records and potentially harmful species. Marine Pollution Bulletin, 141: 629–648, doi: 10.1016/j.marpolbul.2019.03.012
    Rein K S, Snyder R V. 2006. The biosynthesis of polyketide metabolites by dinoflagellates. Advances in Applied Microbiology, 59: 93–125, doi: 10.1016/S0065-2164(06)59004-5
    Ronquist F, Teslenko M, Van Der Mark P, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539–542, doi: 10.1093/sysbio/sys029
    Schlitzer R. 2023. Ocean data view. http://odv.awi.de
    Schmid R, Heuckeroth S, Korf A, et al. 2023. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nature Biotechnology, 41(4): 447–449, doi: 10.1038/s41587-023-01690-2
    Scholin C A, Herzog M, Sogin M, et al. 1994. Identification of group‐and strain‐specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. Journal of Phycology, 30(6): 999–1011, doi: 10.1111/j.0022-3646.1994.00999.x
    Shah M M R, An S J, Lee J B. 2013. Presence of benthic dinoflagellates around coastal waters of Jeju Island including newly recorded species. Journal of Ecology and Environment, 36(4): 347–370, doi: 10.5141/ecoenv.2013.347
    Shannon P, Markiel A, Ozier O, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498–2504, doi: 10.1101/gr.1239303
    Swofford D L, 2002. PAUP: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, Sunderland, MA
    Ten-Hage L, Turquet J, Quod J P, et al. 2000. Prorocentrum borbonicum sp. nov. (Dinophyceae), a new toxic benthic dinoflagellate from the southwestern Indian Ocean. Phycologia, 39(4): 296–301, doi: 10.2216/i0031-8884-39-4-296.1
    Thompson J D, Higgins D G, Gibson T J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22): 4673–4680, doi: 10.1093/nar/22.22.4673
    Tillmann U, Gottschling M, Wietkamp S, et al. 2023a. Morphological and phylogenetic characterisation of Prorocentrum spinulentum, sp. nov. (Prorocentrales, Dinophyceae), a small spiny species from the North Atlantic. Microorganisms, 11(2): 271, doi: 10.3390/microorganisms11020271
    Tillmann U, Hoppenrath M, Gottschling M. 2019. Reliable determination of Prorocentrum micans Ehrenb. (Prorocentrales, Dinophyceae) based on newly collected material from the type locality. European Journal of Phycology, 54(3): 417–431, doi: 10.1080/09670262.2019.1579925
    Tillmann U, Wietkamp S, Gottschling M, et al. 2023b. Prorocentrum pervagatum sp. nov. (Prorocentrales, Dinophyceae): a new, small, planktonic species with a global distribution. Phycological Research, 71(1): 56–71, doi: 10.1111/pre.12502
    Verma A, Kazandjian A, Sarowar C, et al. 2019. Morphology and phylogenetics of benthic Prorocentrum Species (Dinophyceae) from tropical northwestern Australia. Toxins, 11(10): 571, doi: 10.3390/toxins11100571
    Wan Xiukun, Yao Ge, Liu Yanli, et al. 2019. Research progress in the biosynthetic mechanisms of marine polyether toxins. Marine Drugs, 17(10): 594, doi: 10.3390/md17100594
    Wu Yixuan, Huang Shuning, Krock B, et al. 2022. Cryptic speciation of benthic Prorocentrum (Dinophyceae) species and their potential as ecological indicators. Journal of Sea Research, 190: 102304, doi: 10.1016/j.seares.2022.102304
    White T J, Bruns T, Lee S, et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J, et al, eds. PCR Protocols: A Guide to Methods and Applications. New York: Academic Press, 315–322, doi: 10.1016/B978-0-12-372180-8.50042-1
    Xie Hang, Zou Jian, Zheng Chengzhi, et al. 2022. Biodiversity and distribution of benthic dinoflagellates in tropical Zhongsha Islands, South China Sea. Journal of Oceanology and Limnology, 40(6): 2120–2145, doi: 10.1007/s00343-022-1322-z
    Yasumoto T, Murata M, Oshima Y, et al. 1985. Diarrhetic shellfish toxins. Tetrahedron, 41(6): 1019–1025, doi: 10.1016/S0040-4020(01)96469-5
    Zhang Hua, Li Yang, Cen Jingyi, et al. 2015. Morphotypes of Prorocentrum lima (Dinophyceae) from Hainan island, South China Sea: morphological and molecular characterization. Phycologia, 54(5): 503–516, doi: 10.2216/15-8.1
    Zou Jian, Li Qun, Liu Hui, et al. 2022. Taxonomy and toxin profile of harmful benthic Prorocentrum (Dinophyceae) species from the Xisha Islands, South China Sea. Journal of Oceanology and Limnology, 40(3): 1171–1190, doi: 10.1007/s00343-021-1045-6
    Zou Jian, Li Qun, Lu Songhui, et al. 2020. The first benthic harmful dinoflagellate bloom in China: morphology and toxicology of Prorocentrum concavum. Marine Pollution Bulletin, 158: 111313, doi: 10.1016/j.marpolbul.2020.111313
  • 加载中
计量
  • 文章访问数:  154
  • HTML全文浏览量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-04
  • 录用日期:  2024-02-29
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回