Dietary exposure to sulfamethazine, nanoplastics and their binary mixture disrupts the spermatogenesis of marine medaka (Oryzias melastigma)

Yuting Zhang Ruanni Chen Zhiqiang Chen Xiaoyu Fu Ziyi Wu Jinwan Chen Lingtian Xie Humin Zong Jingli Mu

Yuting Zhang, Ruanni Chen, Zhiqiang Chen, Xiaoyu Fu, Ziyi Wu, Jinwan Chen, Lingtian Xie, Humin Zong, Jingli Mu. Dietary exposure to sulfamethazine, nanoplastics and their binary mixture disrupts the spermatogenesis of marine medaka (Oryzias melastigma)[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2289-8
Citation: Yuting Zhang, Ruanni Chen, Zhiqiang Chen, Xiaoyu Fu, Ziyi Wu, Jinwan Chen, Lingtian Xie, Humin Zong, Jingli Mu. Dietary exposure to sulfamethazine, nanoplastics and their binary mixture disrupts the spermatogenesis of marine medaka (Oryzias melastigma)[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2289-8

doi: 10.1007/s13131-024-2289-8

Dietary exposure to sulfamethazine, nanoplastics and their binary mixture disrupts the spermatogenesis of marine medaka (Oryzias melastigma)

Funds: The National Natural Science Foundation of China under contract No. 42106119; the Department of Science and Technology of Fujian Province under contract Nos 2022J02052, 2020J05175 and 2020J05178; the Fujian Provincial Department of Ocean and Fisheries under contract No. FJHJF-L-2022-12; the Yancheng fishery high quality development project under contract No. YCSCYJ2021023).
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • Figure  1.  Gonadosomatic indexes (GSI) in the sulfamethazine (SMZ) and nano polystyrene (PS) exposed male O. melastigma. Asterisks indicated significant differences (* p < 0.05, ** p ≤ 0.01, n ≥ 5).

    Figure  2.  Paraffin sections of testis from the Control (A), L-SMZ (B), H-SMZ (C), PS (D) and H-SMZ + PS (E) groups. No significant effects of PS, SMZ or their binary mixture on the morphological structure of testis were observed. Aund, undifferentiated type A spermatogonia; Adiff, differentiated type A spermatogonia; B, type B spermatogonia; SC, spermatocyte; ST, spermatids.

    Figure  3.  Relative expression of germ cell marker genes in the sulfamethazine (SMZ) and nano polystyrene (PS) exposed male O. melastigma. Representation of spermatogenesis from type A undifferentiated spermatogonia to spermatozoa was modified from Schulz et al., (2010) (A). The transcriptional expression levels of nanos2 (B), piwil1 (C), dazl (D), sycp3 (E), odf3b (F) and sept7 (G) were measured. Asterisks indicated significant differences (* p < 0.05, ** p ≤ 0.01, n ≥ 5). Aund, undifferentiated type A spermatogonia; Adiff, differentiated type A spermatogonia; B, type B spermatogonia; SC, spermatocyte; ST, spermatids; SZ, spermatozoa.

    Figure  4.  Relative expression of spermatogenesis related genes in the sulfamethazine (SMZ) and nano polystyrene (PS) exposed male O. melastigma. The values of four treatment groups were normalized to the control which was set to 0. Color bar from red to green represented the fold change from increasing to decreasing (n ≥ 5).

  • Abdolahpur Monikh F, Baun A, Hartmann N B, et al. 2023. Exposure protocol for ecotoxicity testing of microplastics and nanoplastics. Nature Protocols, 18(11): 3534–3564, doi: 10.1038/s41596-023-00886-9
    Allen D, Allen S, Abbasi S, et al. 2022. Microplastics and nanoplastics in the marine-atmosphere environment. Nature Reviews Earth & Environment, 3(6): 393–405
    Almeida C, Correia S, Rocha E, et al. 2013. Caspase signalling pathways in human spermatogenesis. Journal of Assisted Reproduction and Genetics, 30(4): 487–495, doi: 10.1007/s10815-013-9938-8
    Andrady A L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin, 62(8): 1596–1605, doi: 10.1016/j.marpolbul.2011.05.030
    Avio C G, Gorbi S, Milan M, et al. 2015. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental Pollution, 198: 211–222, doi: 10.1016/j.envpol.2014.12.021
    Bu Qingwei, Wang Bin, Huang Jun, et al. 2013. Pharmaceuticals and personal care products in the aquatic environment in China: a review. Journal of Hazardous Materials, 262: 189–211, doi: 10.1016/j.jhazmat.2013.08.040
    Crespo D, Assis L H C, Furmanek T, et al. 2016. Expression profiling identifies Sertoli and Leydig cell genes as Fsh targets in adult zebrafish testis. Molecular and Cellular Endocrinology, 437: 237–251, doi: 10.1016/j.mce.2016.08.033
    Crespo D, Lemos M S, Zhang Yuting, et al. 2020. PGE2 inhibits spermatogonia differentiation in zebrafish: interaction with Fsh and an androgen. Journal of Endocrinology, 244(1): 163–175, doi: 10.1530/JOE-19-0309
    De Liguoro M, Fioretto B, Poltronieri C, et al. 2009. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. Chemosphere, 75(11): 1519–1524, doi: 10.1016/j.chemosphere.2009.02.002
    Gao Xiang, Ding Guanghui, Li Xishan, et al. 2018. Comparison of toxicity effects of fuel oil treated by different dispersants on marine medaka (Oryzias melastigma) embryo. Acta Oceanologica Sinica, 37(11): 123–132, doi: 10.1007/s13131-018-1255-8
    Geens T, Aerts D, Berthot C, et al. 2012. A review of dietary and non-dietary exposure to bisphenol-A. Food and Chemical Toxicology, 50(10): 3725–3740, doi: 10.1016/j.fct.2012.07.059
    Guo Xuan, Liu Yong, Wang Jianlong. 2019. Sorption of sulfamethazine onto different types of microplastics: a combined experimental and molecular dynamics simulation study. Marine Pollution Bulletin, 145: 547–554, doi: 10.1016/j.marpolbul.2019.06.063
    Hikim A P S, Swerdloff R S. 1999. Hormonal and genetic control of germ cell apoptosis in the testis. Reviews of Reproduction, 4(1): 38–47, doi: 10.1530/ror.0.0040038
    Ji Xiuling, Shen Qunhui, Liu Fang, et al. 2012. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. Journal of Hazardous Materials, 235–236: 178–185
    Jiang Lei, Hu Xialin, Yin Daqiang, et al. 2011. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere, 82(6): 822–828, doi: 10.1016/j.chemosphere.2010.11.028
    Kim H S, Lee B Y, Han J, et al. 2018. The genome of the marine medaka Oryzias melastigma. Molecular Ecology Resources, 18(3): 656–665, doi: 10.1111/1755-0998.12769
    Lalumera G M, Calamari D, Galli P, et al. 2004. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere, 54(5): 661–668, doi: 10.1016/j.chemosphere.2003.08.001
    Li Bowen, Liang Weiwenhui, Liu Quanxing, et al. 2021. Fish ingest microplastics unintentionally. Environmental Science & Technology, 55(15): 10471–10479
    Li Jia, Zhang Kaina, Zhang Hua. 2018. Adsorption of antibiotics on microplastics. Environmental Pollution, 237: 460–467, doi: 10.1016/j.envpol.2018.02.050
    Limbu S M, Zhou Li, Sun Shengxiang, et al. 2018. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment International, 115: 205–219, doi: 10.1016/j.envint.2018.03.034
    Manna P R, Stetson C L, Slominski A T, et al. 2016. Role of the steroidogenic acute regulatory protein in health and disease. Endocrine, 51(1): 7–21, doi: 10.1007/s12020-015-0715-6
    Materić D, Kjær H A, Vallelonga P, et al. 2022. Nanoplastics measurements in Northern and Southern polar ice. Environmental Research, 208: 112741, doi: 10.1016/j.envres.2022.112741
    Ming Junchao, Fu Zhengyi, Ma Zhenhua, et al. 2020. The effect of sulfamonomethoxine treatment on the gut microbiota of Nile tilapia (Oreochromis niloticus). MicrobiologyOpen, 9(11): e1116, doi: 10.1002/mbo3.1116
    Miura T, Miura C, Ohta T, et al. 1999. Estradiol-17β stimulates the renewal of spermatogonial stem cells in males. Biochemical and Biophysical Research Communications, 264(1): 230–234, doi: 10.1006/bbrc.1999.1494
    Nóbrega R H, Morais R D V D S, Crespo D, et al. 2015. Fsh stimulates spermatogonial proliferation and differentiation in zebrafish via Igf3. Endocrinology, 156(10): 3804–3817, doi: 10.1210/en.2015-1157
    Plottel C S, Blaser M J. 2011. Microbiome and malignancy. Cell Host & Microbe, 10(4): 324–335
    Qi Xinyu, Yun Chuyu, Pang Yanli, et al. 2021. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes, 13(1): 1894070, doi: 10.1080/19490976.2021.1894070
    Rist S, Baun A, Hartmann N B. 2017. Ingestion of micro-and nanoplastics in Daphnia magna–Quantification of body burdens and assessment of feeding rates and reproduction. Environmental Pollution, 228: 398–407, doi: 10.1016/j.envpol.2017.05.048
    Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6): 1101–1108, doi: 10.1038/nprot.2008.73
    Schulz R W, de França L R, Lareyre J J, et al. 2010. Spermatogenesis in fish. General and Comparative Endocrinology, 165(3): 390–411, doi: 10.1016/j.ygcen.2009.02.013
    Segner H. 2011. Chapter 86-Reproductive and developmental toxicity in fishes. In: Gupta R C, ed. Reproductive and Developmental Toxicology. San Diego: Academic Press, 1145–1166
    Song M, Gutzeit H O. 2003. Effect of 17‐α‐ethynylestradiol on germ cell proliferation in organ and primary culture of medaka (Oryzias latipes) testis. Development, Growth & Differentiation, 45(4): 327–337
    Trevisan R, Voy C, Chen Shuxin, et al. 2019. Nanoplastics decrease the toxicity of a complex PAH mixture but impair mitochondrial energy production in developing zebrafish. Environmental Science & Technology, 53(14): 8405–8415
    Varshney S, Gora A H, Kiron V, et al. 2023. Polystyrene nanoplastics enhance the toxicological effects of DDE in zebrafish (Danio rerio) larvae. Science of the Total Environment, 859: 160457, doi: 10.1016/j.scitotenv.2022.160457
    Wang Wenxiong. 2013. Dietary toxicity of metals in aquatic animals: recent studies and perspectives. Chinese Science Bulletin, 58(2): 203–213, doi: 10.1007/s11434-012-5413-7
    Wang Xuedong, Ma Yan, Liu Jinfeng, et al. 2017. Reproductive toxicity of β-diketone antibiotic mixtures to zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 141: 160–170, doi: 10.1016/j.ecoenv.2017.02.042
    Wang Jundong, Tan Zhi, Peng Jinping, et al. 2016. The behaviors of microplastics in the marine environment. Marine Environmental Research, 113: 7–17, doi: 10.1016/j.marenvres.2015.10.014
    Xiang Keyu, He Zhiyu, Fu Jianxin, et al. 2022. Microplastics exposure as an emerging threat to ancient lineage: A contaminant of concern for abnormal bending of amphioxus via neurotoxicity. Journal of Hazardous Materials, 438: 129454, doi: 10.1016/j.jhazmat.2022.129454
    Xiao Kun, Song Lili, Li Yishuai, et al. 2023. Dietary intake of microplastics impairs digestive performance, induces hepatic dysfunction, and shortens lifespan in the annual fish Nothobranchius guentheri. Biogerontology, 24(2): 207–223, doi: 10.1007/s10522-022-10007-w
    Xie Lingtian, Funk D H, Buchwalter D B. 2010. Trophic transfer of Cd from natural periphyton to the grazing mayfly Centroptilum triangulifer in a life cycle test. Environmental Pollution, 158(1): 272–277, doi: 10.1016/j.envpol.2009.07.010
    Yan Zhengyu, Yang Qiulian, Jiang Weili, et al. 2018. Integrated toxic evaluation of sulfamethazine on zebrafish: including two lifespan stages (embryo-larval and adult) and three exposure periods (exposure, post-exposure and re-exposure). Chemosphere, 195: 784–792, doi: 10.1016/j.chemosphere.2017.12.119
    Zhang Yuting, Chen Mengyun, He Shuiqing, et al. 2021a. Microplastics decrease the toxicity of triphenyl phosphate (TPhP) in the marine medaka (Oryzias melastigma) larvae. Science of The Total Environment, 763: 143040, doi: 10.1016/j.scitotenv.2020.143040
    Zhang Yuting, Chen Hongxing, He Shuiqing, et al. 2021b. Subchronic toxicity of dietary sulfamethazine and nanoplastics in marine medaka (Oryzias melastigma): Insights from the gut microbiota and intestinal oxidative status. Ecotoxicology and Environmental Safety, 226: 112820, doi: 10.1016/j.ecoenv.2021.112820
    Zhao Songhe, Wang Xinhong, Li Yongyu, et al. 2016. Bioconcentration, metabolism, and biomarker responses in marine medaka (Oryzias melastigma) exposed to sulfamethazine. Aquatic Toxicology, 181: 29–36, doi: 10.1016/j.aquatox.2016.10.026
    Zheng RongHui, Fang Chao, Hong Fukun, et al. 2024. An innovative classification system for ranking the biological effects of marine aromatic hydrocarbons based on fish embryotoxicity. Acta Oceanologica Sinica, 43: 1–10
    Zhou Li, Limbu S M, Qiao Fang, et al. 2018. Influence of long-term feeding antibiotics on the gut health of zebrafish. Zebrafish, 15(4): 340–348, doi: 10.1089/zeb.2017.1526
  • 加载中
计量
  • 文章访问数:  99
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-06-21

目录

    /

    返回文章
    返回