An ensemble learning method to retrieve sea ice roughness from Sentinel-1 SAR images

Pengyi Chen Zhongbiao Chen Runxia Sun Yijun He

Pengyi Chen, Zhongbiao Chen, Runxia Sun, Yijun He. An ensemble learning method to retrieve sea ice roughness from Sentinel-1 SAR images[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2248-9
Citation: Pengyi Chen, Zhongbiao Chen, Runxia Sun, Yijun He. An ensemble learning method to retrieve sea ice roughness from Sentinel-1 SAR images[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2248-9

doi: 10.1007/s13131-023-2248-9

An ensemble learning method to retrieve sea ice roughness from Sentinel-1 SAR images

Funds: The National Key Research and Development Program of China under contract No. 2021YFC2803301; the National Natural Science Foundation of China under contract No. 41977302; the National Natural Science Youth Foundation of China under contract No. 41506199, the Natural Science Youth Foundation of Jiangsu Province under contrant No. BK20150905 and Science and Technology Project of China Huaneng Group Co., Ltd. under contract NO. HNKJ20-H66
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Map of the sea ice age from National Snow and Ice Data Center (NSIDC) (Tschudi et al., 2019) on July 15, 2016. Location of the study area is denoted as a white rectangle.

    Figure  2.  Preprocessed Sentinel-1 SAR image in HH-polarization sensed on July 13, 2016.

    Figure  3.  Sentinel-1 SAR HH-polarization backscatter coefficient (σ0) image under different incidence angles. a. Small incidence angle. b. Middle incidence angle. c. Large incidence angle.

    Figure  4.  Spatial distribution of orthometric height and SIR in OIB ATM data. a. ATM orthometric height. b. Surfuce ice roughness.

    Figure  5.  Workflow of the study.

    Figure  6.  Relationship among SIR, $ \sigma_{0} $ and $ \theta $.

    Figure  7.  Scatter plots of the SIR measured by ATM and that estimated from SAR pixels.

    Figure  8.  Scatter plots of the SIR measured by ATM and that estimated from SAR with 2-D CWT.

    Figure  9.  Results of 2-D Cauchy CWT. a. Region with ice floes (Area 4 in Fig. 2). b. Gradient of Fig. 9a. (c) Peak scales. (d) Peak angles.

    Figure  10.  Learning curves for different types of input data. Input data without 2-D CWT (a) and input data with 2-D CWT (b). The score chosen is the coefficient of determination R2. The highlighted regions demonstrate 1 standard deviation error from the mean score of each fold.

    Figure  11.  The spatial distribution of samples in Center Arctic. Location of the independent test area is denoted as a blue rectangle.

    Figure  12.  Scatter plots of the SIR in independent test region measured by ATM and that estimated from SAR with 2-D CWT.

    Table  1.   Sentinel-1 SAR images used in the study

    Image id Product level Instrument mode Product type Longitude range Latitude range
    1 L1 EW GRD 142.43°–166.67°W 75.72°–80.73°N
    2 L1 EW GRD 151.74°–169.52°W 72.40°–76.99°N
    Resolution Polarisation Sensing start time Relative orbit number Incidence angle range Elevation angle range
    Medium HH, HV 17:46:09 161 19.10°–46.43° 17.12°–40.69°
    Medium HH, HV 17:47:13 161 19.19°–46.51° 17.20°–40.76°
    下载: 导出CSV

    Table  2.   Value of 2-D Cauchy Wavelet Parameters

    Parameter Default value
    A 1
    $\alpha $ π/6
    L 4
    M 4
    下载: 导出CSV
    Algorithm1 Adaboost Regression
    Input: Training set $D = ({\vec x_i},{y_i})$, $i = 1,...,m$; $T$: Number of iterations; $I$: Weak learner;$L$: Loss function.
    Output: Strong learner $H(\vec x) = \sum\limits_{i = 1}^T {\ln (\frac{1}{{{w_t}}})f(\vec x)} $
    Initialization each sample’s weight of 1st iteration
    for $i = 1$to $m$ do
    $Dis{t_1}({\vec x_i}) \leftarrow 1/m$
    end for
    Training process
    for $t = 1$to $T$ do
    Training weak learner ${h_t} \leftarrow I(D,Dis{t_t})$
    for $i = 1$to $m$ do
    Updating maximum error ${E_t} \leftarrow max({E_t},L({y_i},{\vec x_i}))$
    Calculating relative error for each sample ${e_{ti}} \leftarrow L({y_i},{\vec x_i})/{E_t}$
    end for
    Calculating error rate ${e_t} \leftarrow \sum\limits_{i = 1}^T {Dis{t_t}({{\vec x}_i}){e_{ti}}} $
    Updating each learner's weight ${w_t} \leftarrow {e_t}/(1 - {e_t})$
    for $i = 1$to $m$ do
    Updating each learner’s weight $Dis{t_{t + 1}}({\vec x_i}) \leftarrow Dis{t_t}({\vec x_i})w_t^{1 - {e_{ti}}}$
    end for
    Normalize $Dis{t_t}({\vec x_i})$to be a proper distribution
    $t = t + 1$
    end for
    Calculating the median of weighted predicted (${w_t}{h_t}$) value$f(\vec x)$
    下载: 导出CSV

    Table  3.   Model evaluation metrics

    Metric Formula
    Coefficient of determination (R2) $ R^2=1-\displaystyle\frac{\displaystyle\sum_{i=1}^N(\hat{y}_i-y_i)}{\displaystyle\sum^N_{i=1}(y_i-\bar{y})^2}$
    Mean absolute error (MAE) $ MAE=\displaystyle\frac{1}{N}\sum^N_{i=1}|\hat{y}_i-y_i|$
    Root mean square error (RMSE) $ RMSE=\sqrt{\displaystyle\frac{1}{N}\sum^N_{i=1}(\hat{y}_i-y_i)^2}$
    Mean absolute percentage
    error (MAPE)
    $ MAPE=\displaystyle\frac{1}{N}\sum^N_{i=1}\left|\frac{\hat{y}_i-y_i}{y_i}\right|\times 100\%$
    Note: N is the size of dataset, $ \hat y_i$ is the predicted value, yi is the true value and $ \bar y$ represents the average of true values.
    下载: 导出CSV

    Table  4.   Performance metrics of training and testing set

    DatasetR2MAE/cmRMSE/cmMAPE/%
    Training0.912.112.845.24
    Testing0.742.934.8561.98
    下载: 导出CSV

    Table  5.   Performance metrics of each fold and average performance for the selected model

    Fold MAE/cm RMSE/cm R2 MAPE/%
    1 2.94 4.36 0.79 59.00
    2 2.84 4.39 0.79 61.50
    3 3.04 4.60 0.77 65.45
    4 3.07 4.41 0.79 59.77
    5 2.98 4.76 0.75 61.04
    2.97 4.51 0.78 61.35
    Note: The bold values are mean values.
    下载: 导出CSV

    Table  6.   Performance metrics of training and testing set with 2-D CWT

    DatasetR2MAE/cmRMSE/cmMAPE/%z
    Training0.971.241.7726.52
    Testing0.911.712.8236.37
    下载: 导出CSV

    Table  7.   Performance of Each Fold and the Mean Value of Each Metric with 2-D CWT

    Fold MAE/cm RMSE/cm R2 MAPE/%
    1 1.77 3.04 0.90 33.41
    2 1.84 2.64 0.92 40.77
    3 1.66 2.63 0.92 36.07
    4 1.81 3.03 0.90 38.04
    5 1.73 2.90 0.91 36.20
    1.76 2.86 0.91 36.90
    Note: The bold values are mean values.
    下载: 导出CSV

    Table  8.   Sentinel-1 SAR images used in the independent test

    Image idProduct levelInstrument modeProduct typeLongitude rangeLatitude range
    1L1EWGRD58.89°–103.19°W80.92°-86.11°N
    2L1EWGRD51.28°–97.67°W81.27°–86.45°N
    3L1EWGRD60.61°–107.35°W81.36°–86.54°N
    ResolutionPolarisationSensing start timeRelative orbit numberIncidence angle rangeElevation angle range
    MediumHH, HVJuly 16, 20171318.80°–46.66°16.86°–40.89°
    MediumHH, HVJuly 17, 20171318.95°–46.66°16.99°–40.88°
    MediumHH, HVJuly 19, 20171319.19°–46.47°17.20°–40.72°
    下载: 导出CSV

    Table  9.   Performance metrics of training and independent testing set

    DatasetR2MAE/cmRMSE/cmMAPE/%
    Training0.971.311.9210.17
    Independent test0.950.891.465.71
    下载: 导出CSV
  • Antoine J P, Murenzi R. 1996. Two-dimensional directional wavelets and the scale-angle representation. Signal Processing, 52(3): 259–281. doi: 10.1016/0165-1684(96)00065-5
    Antoine J P, Murenzi R, Vandergheynst P. 1999. Directional wavelets revisited: Cauchy wavelets and symmetry detection in patterns. Applied and Computational Harmonic Analysis, 6(3): 314–345. doi: 10.1006/acha.1998.0255
    Babb D G, Landy J C, Barber D G, et al. 2019. Winter sea ice export from the Beaufort Sea as a preconditioning mechanism for enhanced summer melt: A case study of 2016. Journal of Geophysical Research: Oceans, 124(9): 6575–6600. doi: 10.1029/2019JC015053
    Beckers J F, Renner A H H, Spreen G, et al. 2015. Sea-ice surface roughness estimates from airborne laser scanner and laser altimeter observations in Fram Strait and north of Svalbard. Annals of Glaciology, 56(69): 235–244. doi: 10.3189/2015AoG69A717
    Cafarella S M, Scharien R, Geldsetzer T, et al. 2019. Estimation of level and deformed first-year sea ice surface roughness in the Canadian Arctic archipelago from C- and L- band synthetic aperture radar. Canadian Journal of Remote Sensing, 45(3-4): 457–475. doi: 10.1080/07038992.2019.1647102
    Carlström A. 1997. A microwave backscattering model for deformed first-year sea ice and comparisons with SAR data. IEEE Transactions on Geoscience and Remote Sensing, 35(2): 378–391. doi: 10.1109/36.563277
    Carlström A, Ulander L M H, Hakansson B. 1994. Model for estimating surface roughness of level and ridged sea ice using ERS-1 SAR. In: 1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena, CA,USA: IEEE,168–170
    Daubechies I. 1992. Ten Lectures on Wavelets. Philadelphia, PA: Society for Industrial and Applied Mathematics
    Drucker H. 1997. Improving regressors using boosting techniques. In: Proceedings the 14th International Conference on Machine Learning. Nashiville: Morgan Kaufmann Publishers Inc. , 107–115
    Efendi A, Fitriani R, Naufal H I, et al. 2020. Ensemble Adaboost in classification and regression trees to overcome class imbalance in credit status of bank customers. Journal of Theoretical and Applied Information Technology, 98(17): 3428–3437
    Filipponi F. 2019. Sentinel-1 GRD preprocessing workflow. Proceedings, 18(1): 11
    Grenfell T C, Perovich D K. 1984. Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea. Journal of Geophysical Research: Oceans, 89(C3): 3573–3580. doi: 10.1029/JC089iC03p03573
    Gu Xiaowei, Angelov P P. 2022. Multiclass fuzzily weighted adaptive-boosting-based self-organizing fuzzy inference ensemble systems for classification. IEEE Transactions on Fuzzy Systems, 30(9): 3722–3735. doi: 10.1109/TFUZZ.2021.3126116
    Gupta M, Barber D G. 2015. Sub-pixel evaluation of sea ice roughness using AMSR-E data. International Journal of Remote Sensing, 36(3): 749–763. doi: 10.1080/01431161.2014.1001081
    Hong S. 2010. Detection of small-scale roughness and refractive index of sea ice in passive satellite microwave remote sensing. Remote Sensing of Environment, 114(5): 1136–1140. doi: 10.1016/j.rse.2009.12.015
    Hsieh W W. 2023. Decision trees, random forests and boosting. In: Introduction to Environmental Data Science. Cambridge: Cambridge University Press, 473–493
    Jackson C R, Apel J R. 2004. Synthetic Aperture Radar Marine User’s Manual. Washington, DC: National Oceanic and Atmospheric Administration, 377–379
    Jiang Mingzhe, Clausi D A, Xu Linlin. 2022. Sea-ice mapping of RADARSAT-2 imagery by integrating spatial contexture with textural features. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15: 7964–7977. doi: 10.1109/JSTARS.2022.3205849
    Kim S H, Kim H C, Hyun C U, et al. 2020. Evolution of backscattering coefficients of drifting multi-year sea ice during end of melting and onset of freeze-up in the western Beaufort Sea. Remote Sensing, 12(9): 1378. doi: 10.3390/rs12091378
    Landy J C, Petty A A, Tsamados M, et al. 2020. Sea ice roughness overlooked as a key source of uncertainty in CryoSat-2 ice freeboard retrievals. Journal of Geophysical Research: Oceans, 125(5): e2019JC015820. doi: 10.1029/2019JC015820
    Lee J S, Jurkevich L, Dewaele P, et al. 1994. Speckle filtering of synthetic aperture radar images: A review. Remote Sensing Reviews, 8(4): 313–340. doi: 10.1080/02757259409532206
    Li Xiaoming, Sun Yan, Zhang Qiang. 2021. Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data. IEEE Transactions on Geoscience and Remote Sensing, 59(4): 3040–3053. doi: 10.1109/TGRS.2020.3007789
    Liu Mengjie, Dai Yongshou, Zhang Jie, et al. 2016. The microwave scattering characteristics of sea ice in the Bohai Sea. Acta Oceanologica Sinica, 35(5): 89–98. doi: 10.1007/s13131-016-0861-6
    Marbouti M, Antropov O, Eriksson P, et al. 2018. Automated sea ice classification over the Baltic Sea using multiparametric features of Tandem-X InSAR images. In: 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE,7328–7331
    Martin T, Tsamados M, Schroeder D, et al. 2016. The impact of variable sea ice roughness on changes in Arctic Ocean surface stress: A model study. Journal of Geophysical Research: Oceans, 121(3): 1931–1952. doi: 10.1002/2015JC011186
    Mohr F, van Rijn J N. 2022. Learning curves for decision making in supervised machine learning - A survey. arXiv: 2201.12150
    Mosadegh E, Nolin A W. 2020. Estimating Arctic sea ice surface roughness by using back propagation neural network. In: AGU Fall Meeting 2020. San Francisco, CA,USA: AGU,C014–0005
    Mosadegh E, Nolin A W. 2022. A new data processing system for generating sea ice surface roughness products from the multi-angle imaging spectroradiometer (MISR) imagery. Remote Sensing, 14(19): 4979. doi: 10.3390/rs14194979
    Nolin A W, Mar E. 2018. Arctic sea ice surface roughness estimated from multi-angular reflectance satellite imagery. Remote Sensing, 11(1): 50. doi: 10.3390/rs11010050
    Palerme C, Müller M. 2021. Calibration of sea ice drift forecasts using random forest algorithms. The Cryosphere, 15(8): 3989–4004. doi: 10.5194/tc-15-3989-2021
    Pedregosa F, Varoquaux G, Gramfort A, et al. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12: 2825–2830
    Prasad S, Haynes R D, Zakharov I, et al. 2021. Estimation of sea ice parameters using an assimilated sea ice model with a variable drag formulation. Ocean Modelling, 158: 101739. doi: 10.1016/j.ocemod.2020.101739
    Segal R A, Scharien R K, Cafarella S, et al. 2020. Characterizing winter landfast sea-ice surface roughness in the Canadian Arctic archipelago using Sentinel-1 synthetic aperture radar and the multi-angle imaging spectroradiometer. Annals of Glaciology, 61(83): 284–298. doi: 10.1017/aog.2020.48
    Shanmugasundar G, Vanitha M, Čep R, et al. 2021. A comparative study of linear, Random Forest and AdaBoost Regressions for modeling non-traditional machining. Processes, 9(11): 2015. doi: 10.3390/pr9112015
    Studinger M. 2014. IceBridge ATM l2 Icessn elevation, slope, and roughness, version 2. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://nsidc.org/data/ILATM2/versions/2 [2023-06-01
    Torres R, Snoeij P, Geudtner D, et al. 2012. GMES Sentinel-1 mission. Remote Sensing of Environment, 120: 9–24. doi: 10.1016/j.rse.2011.05.028
    Tschudi M, Meier W N, Stewart J S, et al. 2019. EASE-grid sea ice age, version 4. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://nsidc.org/data/NSIDC-0611/versions/4 [2023-06-01
    Wen Xiaoyang, Xue Cunjin, Dong Qing. 2011. The Arctic sea ice surface roughness estimation and application. In: Proceedings of the 21st International Offshore and Polar Engineering Conference. Maui, Hawaii,USA: ISOPE,958–961
    Xiao Changjiang, Chen Nengcheng, Hu Chuli, et al. 2019. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sensing of Environment, 233: 111358. doi: 10.1016/j.rse.2019.111358
    Yan Qingyun, Huang Weimin. 2019. Detecting sea ice from TechDemoSat-1 data using Support Vector Machines with feature selection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(5): 1409–1416. doi: 10.1109/JSTARS.2019.2907008
    Zhu Zonghai, Wang Zhe, Li Dongdong, et al. 2020. Geometric structural ensemble learning for imbalanced problems. IEEE Transactions on Cybernetics, 50(4): 1617–1629. doi: 10.1109/TCYB.2018.2877663
  • 加载中
计量
  • 文章访问数:  115
  • HTML全文浏览量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 录用日期:  2023-08-29
  • 网络出版日期:  2024-03-08

目录

    /

    返回文章
    返回