Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model

Lina Wang Yu Cao Xilin Deng Huitao Liu Changming Dong

Lina Wang, Yu Cao, Xilin Deng, Huitao Liu, Changming Dong. Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model[J]. Acta Oceanologica Sinica, 2023, 42(10): 54-66. doi: 10.1007/s13131-023-2246-y
Citation: Lina Wang, Yu Cao, Xilin Deng, Huitao Liu, Changming Dong. Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model[J]. Acta Oceanologica Sinica, 2023, 42(10): 54-66. doi: 10.1007/s13131-023-2246-y

doi: 10.1007/s13131-023-2246-y

Significant wave height forecasts integrating ensemble empirical mode decomposition with sequence-to-sequence model

Funds: The Project Supported by Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No.SML2020SP007; the National Natural Science Foundation of China under contract Nos 42192562 and 62072249.
More Information
    Corresponding author: E-mail: cmdong@nuist.edu.cn;leader author, E-mail: wangln@nuist.edu.cn
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of Buoys 41040, 41044, 41046 and 41047 (data acquired from National Data Buoy Center).

    Figure  2.  The flow chart of the ensemble empirical mode decomposition algorithm. m is the mean of the upper and lower envelope; IMF: intrinsic mode function.

    Figure  3.  The structure of the sequence-to-sequence prediction model with attention mechanism. LSTM: long short-term memory; CA: encoded attention vector. The meanings of symbols refer to formula in the text.

    Figure  4.  The structure of long short-term memory neuron.

    Figure  5.  The structure of the ensemble empirical mode decomposition sequence-to-sequence (EEMD-Seq-to-Seq) prediction model. IMFs: intrinsic mode functions.

    Figure  6.  The flowchart of ensemble empirical mode decomposition sequence-to-sequence (EEMD-Seq-to-Seq) prediction model.

    Figure  7.  Comparison of significant wave height (SWH) forecasts of different models for Buoy 41040 at the 3-h (a), 6-h (b), 12-h (c) and 24-h (d) windows. LSTM: long short-term memory; EEMD-Seq-to-Seq: ensemble empirical mode decomposition with the sequence-to-sequence model.

    Figure  8.  Comparison of significant wave height (SWH) forecasts of different models for Buoy 41044 at the 3-h (a), 6-h (b), 12-h (c) and 24-h (d) windows. LSTM: long short-term memory; EEMD-Seq-to-Seq: ensemble empirical mode decomposition with the sequence-to-sequence model.

    Figure  9.  Comparison of significant wave height (SWH) forecasts of different models for Buoy 41046 at the 3-h (a), 6-h (b), 12-h (c) and 24-h (d) windows. LSTM: long short-term memory; EEMD-Seq-to-Seq: ensemble empirical mode decomposition with the sequence-to-sequence model.

    Figure  10.  Comparison of significant wave height (SWH) forecasts of different models for Buoy 41047 at the 3-h (a), 6-h (b), 12-h (c) and 24-h (d) windows. LSTM: long short-term memory; EEMD-Seq-to-Seq: ensemble empirical mode decomposition with the sequence-to-sequence model.

    Figure  11.  Comparison of empirical mode decomposition-long short-term memory (EMD-LSTM) and EMD-sequence-to-sequence significant wave height forecast errors at the 3-h (a), 6-h (b), 12-h (c) and 24-h (d) forecast windows for Buoy 41047.

    Figure  12.  Comparison of significant wave heights (SWHs) of the 2nd, 3rd, 4th and 5th intrinsic mode functions through empirical mode decomposition model (a–d) and ensemble empirical mode decomposition model (e–h).

    Figure  13.  Scatter diagram of the observed and predicted significant wave height (SWHs) obtained by different algorithms at Buoy 41040. a–d for 3-h forecast window, e–h for 6-h forecast window, i–l for 12-h forecast window, m–p for 24-h forecast window.

    Table  1.   Data statistics of the selected buoys from January 1, 2019 to December 31, 2020 (data acquired from National Data Buoy Center)

    Buoy IDLatitudeLongitudeWater depth/mNumber of observations
    (before interpolation)
    Number of observations
    (after interpolation)
    4104014.542°N53.341°W5 15917 27317 520
    4104421.582°N58.630°W5 41917 28017 520
    4104623.822°N68.384°W5 54916 92417 520
    4104727.514°N71.494°W5 32117 23417 520
    下载: 导出CSV

    Table  2.   Comparisons of error statistics among four algorithms at the 3-h, 6-h, 12-h, 24-h, 48-h and 72-h forecast windows for Buoy 41040

    Time spanLSTMEMD-LSTMEMD-Seq-to-SeqEEMD-Seq-to-Seq
    RMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%R
    3 h0.170.126.550.950.080.063.250.980.080.063.250.990.080.063.180.99
    6 h0.220.158.120.920.100.073.92240.980.100.073.790.980.090.063.330.99
    12 h0.290.2111.080.840.140.105.320.970.140.105.180.930.110.084.320.98
    24 h0.390.2814.930.690.210.157.930.920.200.147.450.930.160.126.040.96
    48 h0.480.3418.430.470.310.2111.500.830.310.2211.660.830.270.189.320.87
    72 h0.510.3720.020.360.380.2615.240.740.380.2915.280.700.380.2914.890.70
    Note: RMSE: root mean square error; MAE: mean absolute error; MAPE: mean absolute percentage error; R: Pearson correlation coefficient; LSTM: long short-term memory; EEMD: ensemble empirical mode decomposition; Seq-to-Seq: sequence-to-sequence deep learning model.
    下载: 导出CSV

    Table  3.   Comparisons of error statistics among four algorithms at the 3-h, 6-h, 12-h, 24-h, 48-h and 72-h forecast windows for Buoy 41044

    Time
    span
    LSTMEMD-LSTMEMD-Seq-to-SeqEEMD-Seq-to-Seq
    RMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%R
    3 h0.210.137.250.950.110.073.590.990.110.084.240.990.080.052.930.99
    6 h0.270.179.230.920.140.084.420.980.140.094.980.980.090.063.630.99
    12 h0.380.2413.220.820.210.126.330.970.200.137.080.960.130.094.990.98
    24 h0.540.3418.900.520.330.2010.950.880.330.2014.610.890.210.147.440.91
    48 h0.650.4223.930.310.510.3118.320.720.470.3015.160.750.320.2110.850.88
    72 h0.680.4425.730.160.530.3218.790.720.510.3317.140.730.480.3216.870.72
    Note: RMSE: root mean square error; MAE: mean absolute error; MAPE: mean absolute percentage error; R: Pearson correlation coefficient; LSTM: long short-term memory; EEMD: ensemble empirical mode decomposition; Seq-to-Seq: sequence-to-sequence deep learning model.
    下载: 导出CSV

    Table  4.   Comparisons of error statistics among four algorithms at the 3-h, 6-h, 12-h, 24-h, 48-h and 72-h forecast windows for Buoy 41046

    Time spanLSTMEMD-LSTMEMD-Seq-to-SeqEEMD-Seq-to-Seq
    RMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%R
    3 h0.230.158.590.950.110.074.030.990.120.084.610.990.080.063.130.99
    6 h0.290.1911.120.910.130.095.090.980.130.095.130.980.090.063.440.99
    12 h0.410.2615.920.830.190.137.310.960.180.126.680.970.120.094.810.99
    24 h0.550.3722.640.660.300.2011.380.910.270.1810.420.930.210.158.090.96
    48 h0.670.4628.750.410.420.3116.840.830.380.2715.320.850.320.2212.350.90
    72 h0.710.4930.600.300.470.3418.480.770.460.3318.660.770.420.3016.540.83
    Note: RMSE: root mean square error; MAE: mean absolute error; MAPE: mean absolute percentage error; R: Pearson correlation coefficient; LSTM: long short-term memory; EEMD: ensemble empirical mode decomposition; Seq-to-Seq: sequence-to-sequence deep learning model.
    下载: 导出CSV

    Table  5.   Comparisons of error statistics among four algorithms at the 3-h, 6-h, 12-h, 24-h, 48-h and 72-h forecast windows for Buoy 41047

    Time spanLSTMEMD-LSTMEMD-Seq-to-SeqEEMD-Seq-to-Seq
    RMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%RRMSE/mMAE/mMAPE/%R
    3 h0.250.169.390.960.130.073.970.990.110.074.120.990.100.063.910.99
    6 h0.330.2112.430.930.130.094.950.980.120.084.740.990.110.074.560.99
    12 h0.450.3018.130.850.210.137.350.970.190.126.900.970.150.116.160.98
    24 h0.630.4326.430.680.390.2613.010.910.370.2412.530.910.250.1710.030.96
    48 h0.790.5534.010.400.580.3820.850.790.550.3822.030.780.390.2716.810.89
    72 h0.830.5936.520.250.620.4323.760.710.600.4224.950.720.490.3619.850.82
    Note: RMSE: root mean square error; MAE: mean absolute error; MAPE: mean absolute percentage error; R: Pearson correlation coefficient; LSTM: long short-term memory; EEMD: ensemble empirical mode decomposition; Seq-to-Seq: sequence-to-sequence deep learning model.
    下载: 导出CSV
  • Ardhuin F, Stopa J E, Chapron B, et al. 2019. Observing sea states. Frontiers in Marine Science, 6: 124. doi: 10.3389/fmars.2019.00124
    Bahdanau D, Cho K, Bengio Y. 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv: 1409.0473
    Bokde N, Feijóo A, Al-Ansari N, et al. 2020. The hybridization of ensemble empirical mode decomposition with forecasting models: application of short-term wind speed and power modeling. Energies, 13(7): 1666. doi: 10.3390/en13071666
    Caires S, Sterl A. 2005. 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. Journal of Climate, 18(7): 1032–1048. doi: 10.1175/JCLI-3312.1
    Deo M C, Naidu C S. 1998. Real time wave forecasting using neural networks. Ocean Engineering, 26(3): 191–203. doi: 10.1016/S0029-8018(97)10025-7
    Duan W Y, Han Y, Huang L M, et al. 2016. A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Engineering, 124: 54–73. doi: 10.1016/j.oceaneng.2016.05.049
    Etemad-Shahidi A, Mahjoobi J. 2009. Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Engineering, 36(15−16): 1175–1181. doi: 10.1016/j.oceaneng.2009.08.008
    Fan Shuntao, Xiao Nianhao, Dong Sheng. 2020. A novel model to predict significant wave height based on long short-term memory network. Ocean Engineering, 205: 107298. doi: 10.1016/j.oceaneng.2020.107298
    Gong Gangjun, An Xiaonan, Mahato N K, et al. 2019. Research on short-term load prediction based on Seq2seq model. Energies, 12(16): 3199. doi: 10.3390/en12163199
    Graves A. 2012. Supervised Sequence Labelling with Recurrent Neural Networks. Heidelberg: Springer Berlin, 37–45
    Huang N E, Shen Zheng, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971): 903–995
    Karatzoglou A, Jablonski A, Beigl M. 2018. A Seq2Seq learning approach for modeling semantic trajectories and predicting the next location. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Washington, Seattle: ACM
    Keneshloo Y, Shi Tian, Ramakrishnan N, et al. 2020. Deep reinforcement learning for sequence-to-sequence models. IEEE Transactions on Neural Networks and Learning Systems, 31(7): 2469–2489
    Mahjoobi J, Mosabbeb E A. 2009. Prediction of significant wave height using regressive support vector machines. Ocean Engineering, 36(5): 339–347. doi: 10.1016/j.oceaneng.2009.01.001
    Nikoo M R, Kerachian R, Alizadeh M R. 2018. A fuzzy KNN-based model for significant wave height prediction in large lakes. Oceanologia, 60(2): 153–168. doi: 10.1016/j.oceano.2017.09.003
    Oh J, Suh K D. 2018. Real-time forecasting of wave heights using EOF–wavelet–neural network hybrid model. Ocean Engineering, 150: 48–59. doi: 10.1016/j.oceaneng.2017.12.044
    Pirhooshyaran M, Snyder L V. 2020. Forecasting, hindcasting and feature selection of ocean waves via recurrent and sequence-to-sequence networks. Ocean Engineering, 207: 107424. doi: 10.1016/j.oceaneng.2020.107424
    Raj N, Brown J. 2021. An EEMD-BiLSTM algorithm integrated with Boruta random forest optimiser for significant wave height forecasting along coastal areas of Queensland, Australia. Remote Sensing, 13(8): 1456. doi: 10.3390/rs13081456
    Sutskever I, Vinyals O, Le Q V. 2014. Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press
    Vanem E. 2016. Joint statistical models for significant wave height and wave period in a changing climate. Marine Structures, 49: 180–205. doi: 10.1016/j.marstruc.2016.06.001
    Vaswani A, Shazeer N, Parmar N, et al. 2017. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc
    Wang Lina, Deng Xilin, Ge Peng, et al. 2022. CNN-BiLSTM-attention model in forecasting wave height over South-East China Seas. Computers, Materials & Continua, 73(1): 2151–2168
    Wu Zhaohua, Huang N E. 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1): 1–41. doi: 10.1142/S1793536909000047
    Yang Shaobo, Deng Zegui, Li Xingfei, et al. 2021. A novel hybrid model based on STL decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast. Renewable Energy, 173: 531–543. doi: 10.1016/j.renene.2021.04.010
    Yang Yu, Wang Jun. 2021. Forecasting wavelet neural hybrid network with financial ensemble empirical mode decomposition and MCID evaluation. Expert Systems with Applications, 166: 114097. doi: 10.1016/j.eswa.2020.114097
    Ye Lin, Dai Binhua, Pei Ming, et al. 2022. Combined approach for short-term wind power forecasting based on wave division and Seq2Seq model using deep learning. IEEE Transactions on Industry Applications, 58(2): 2586–2596. doi: 10.1109/TIA.2022.3146224
    Zhang Yu, Li Yanting, Zhang Guangyao. 2020. Short-term wind power forecasting approach based on Seq2Seq model using NWP data. Energy, 213: 118371. doi: 10.1016/j.energy.2020.118371
    Zhou Shuyi, Bethel B J, Sun Wenjin, et al. 2021. Improving significant wave height forecasts using a joint empirical mode decomposition–long short-term memory network. Journal of Marine Science and Engineering, 9(7): 744. doi: 10.3390/jmse9070744
    Zhou Shuyi, Xie Wenhong, Lu Yuxiang, et al. 2021. ConvLSTM-based wave forecasts in the South and East China Seas. Frontiers in Marine Science, 8: 680079. doi: 10.3389/fmars.2021.680079
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  91
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-10
  • 录用日期:  2023-08-15
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回