Three-dimensional constrained gravity inversion of Moho depth and crustal structural characteristics at Mozambique continental margin

Shihao Yang Zhaocai Wu Yinxia Fang Mingju Xu Jialing Zhang Fanlin Yang

Shihao Yang, Zhaocai Wu, Yinxia Fang, Mingju Xu, Jialing Zhang, Fanlin Yang. Three-dimensional constrained gravity inversion of Moho depth and crustal structural characteristics at Mozambique continental margin[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2220-8
Citation: Shihao Yang, Zhaocai Wu, Yinxia Fang, Mingju Xu, Jialing Zhang, Fanlin Yang. Three-dimensional constrained gravity inversion of Moho depth and crustal structural characteristics at Mozambique continental margin[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2220-8

doi: 10.1007/s13131-023-2220-8

Three-dimensional constrained gravity inversion of Moho depth and crustal structural characteristics at Mozambique continental margin

Funds: The National Natural Science Foundation of China under contract No. 42076078; China–Mozambique Joint Cruise under contract No. GASI-01-DLJHJ-CM.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
  • Figure  1.  a. Depiction of the topography and main geological structures of the study area. The white circle refers to the OBS station in the area; b. Free-air gravity anomalies in the study area, the dotted lines are magnetic anomaly strips; c. Sedimentary thickness in the study area (SB: Somalia Basin; DFZ: Davie Fracture Zone; MozC: Mozambique Channel; BH: Beira High; NNV: Northern Natal Valley; MFZ: Mozambique Fracture Zone; nMozR: north Mozambique Ridge; sMozR: south Mozambique Ridge; MB: Mozambique Basin; MadR: Madagascar Range; AG: Ariel Graben; MCP: Mozambique Coastal Plain).

    Figure  2.  Flowchart of inversion (FAA: Free-Air anomaly; BGA: Bouguer gravity anomaly).

    Figure  3.  a. Gravity effect of the sedimentary layer; b. Bouguer gravity anomaly after correction of sedimentary layer.

    Figure  4.  Comparison of Moho depth gravity inversion results and deep seismic data interpretation results Measuring line MZ07 (a) Measuring line 20070201 (b). The positions of the measuring lines are shown in Fig. 1. .

    Figure  5.  a. Moho depth in the study area; b. Crustal thickness in the study area.

    Figure  6.  COB distribution in Mozambique continental margin; a. north region; b. south region. The bottom map is crustal thickness.

    Figure  7.  Crustal thickness map of the Mozambique Channel. The brown translucent area is part of the continental crust.

    Figure  8.  Geological interpretation of profile AWI-20140010. a. The free-air gravity anomaly. b. The magnetic anomaly along the profile are shown. c. Geological interpretation of the profile (Mueller et al., 2016).

    Figure  9.  P-wave velocity models of profile MZ1 (Moulin et al., 2020).

    Table  1.   OBS constraint points for inversion.

    Name of measuring
    Number of the used
    constraint points
    AWI-2014010025Vormann et al. (2020)
    AWI-2014005025Vormann et al. (2020)
    AWI-2014015020Vormann and Jokat (2021)
    AWI-2014013020Vormann and Jokat (2021)
    2007020127Leinweber et al. (2013)
    2007020211Leinweber et al. (2013)
    AWI-2014001037Mueller et al. (2016)
    下载: 导出CSV
  • Bai Yongliang, Wu Shiguo, Liu Zhan, et al. 2015. Full-fit reconstruction of the South China Sea conjugate margins. Tectonophysics, 661: 121–135. doi: 10.1016/j.tecto.2015.08.028
    Basile C. 2015. Transform continental margins — Part 1: concepts and models. Tectonophysics, 661: 1–10. doi: 10.1016/j.tecto.2015.08.034
    Chappell A R, Kusznir N J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174(1): 1–13. doi: 10.1111/j.1365-246X.2008.03803.x
    Evain M, Schnürle P, Leprêtre A, et al. 2021. Crustal structure of the East African Limpopo margin, a strike-slip rifted corridor along the continental Mozambique Coastal Plain and North Natal Valley. Solid Earth, 12(8): 1865–1897. doi: 10.5194/se-12-1865-2021
    Fischer M D, Uenzelmann-Neben G, Jacques G, et al. 2017. The Mozambique ridge: a document of massive multistage magmatism. Geophysical Journal International, 208(1): 449–467. doi: 10.1093/gji/ggw403
    Franke D, Jokat W, Ladage S, et al. 2015. The offshore East African Rift System: structural framework at the toe of a juvenile rift. Tectonics, 34(10): 2086–2104. doi: 10.1002/2015TC003922
    Fullea J, Fernàndez M, Zeyen H. 2008. FA2BOUG—A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: application to the Atlantic-Mediterranean transition zone. Computers & Geosciences, 34(12): 1665–1681
    Gaina C, Torsvik T H, Van Hinsbergen D J J, et al. 2013. The African Plate: a history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics, 604: 4–25. doi: 10.1016/j.tecto.2013.05.037
    Gohl K, Uenzelmann-Neben G, Grobys N. 2011. Growth and dispersal of a Southeast African large igneous province. South African Journal of Geology, 114(3–4): 379–386
    Greenhalgh E E, Kusznir N J. 2007. Evidence for thin oceanic crust on the extinct Aegir Ridge, Norwegian Basin, NE Atlantic derived from satellite gravity inversion. Geophysical Research Letters, 34(6): L06305
    Hanyu T, Nogi Y, Fujii M. 2017. Crustal formation and evolution processes in the Natal Valley and Mozambique Ridge, off South Africa. Polar Science, 13: 66–81. doi: 10.1016/j.polar.2017.06.002
    König M, Jokat W. 2010. Advanced insights into magmatism and volcanism of the Mozambique Ridge and Mozambique Basin in the view of new potential field data. Geophysical Journal International, 180(1): 158–180. doi: 10.1111/j.1365-246X.2009.04433.x
    Leinweber V T, Jokat W. 2011. Is there continental crust underneath the northern Natal Valley and the Mozambique Coastal Plains? Geophysical Research Letters, 38(14): L14303
    Leinweber V T, Jokat W. 2012. The Jurassic history of the Africa–Antarctica corridor — new constraints from magnetic data on the conjugate continental margins. Tectonophysics, 530–531: 87–101
    Leinweber V T, Klingelhoefer F, Neben S, et al. 2013. The crustal structure of the Central Mozambique continental margin — Wide-angle seismic, gravity and magnetic study in the Mozambique Channel, Eastern Africa. Tectonophysics, 599: 170–196. doi: 10.1016/j.tecto.2013.04.015
    Mahanjane E S. 2012. A geotectonic history of the northern Mozambique Basin including the Beira High – A contribution for the understanding of its development. Marine and Petroleum Geology, 36(1): 1–12. doi: 10.1016/j.marpetgeo.2012.05.007
    Matsinhe N D, Tang Yong, Li Chunfeng, et al. 2021. The crustal nature of the northern Mozambique Ridge, Southwest Indian Ocean. Acta Oceanologica Sinica, 40(7): 170–182. doi: 10.1007/s13131-021-1747-9
    Mougenot D, Recq M, Virlogeux P, et al. 1986. Seaward extension of the East African Rift. Nature, 321(6070): 599–603. doi: 10.1038/321599a0
    Moulin M, Aslanian D, Evain M, et al. 2020. Gondwana breakup: messages from the North Natal Valley. Terra Nova, 32(3): 205–214. doi: 10.1111/ter.12448
    Mueller C O, Jokat W. 2017. Geophysical evidence for the crustal variation and distribution of magmatism along the central coast of Mozambique. Tectonophysics, 712–713: 684–703
    Mueller C O, Jokat W. 2019. The initial Gondwana break-up: a synthesis based on new potential field data of the Africa-Antarctica Corridor. Tectonophysics, 750: 301–328. doi: 10.1016/j.tecto.2018.11.008
    Mueller C O, Jokat W, Schreckenberger B. 2016. The crustal structure of Beira High, central Mozambique-Combined investigation of wide-angle seismic and potential field data. Tectonophysics, 683: 233–254. doi: 10.1016/j.tecto.2016.06.028
    Nguyen L C, Hall S A, Bird D E, et al. 2016. Reconstruction of the East Africa and Antarctica continental margins. Journal of Geophysical Research: Solid Earth, 121(6): 4156–4179. doi: 10.1002/2015JB012776
    Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31(4): 447–455. doi: 10.1111/j.1365-246X.1973.tb06513.x
    Salman G, Abdula I. 1995. Development of the Mozambique and Ruvuma sedimentary basins, offshore Mozambique. Sedimentary Geology, 96(1–2): 7–41
    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
    Sclater J G, Christie P A F. 1980. Continental stretching: an explanation of the Post-Mid-Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research:Solid Earth, 85(B7): 3711–3739. doi: 10.1029/JB085iB07p03711
    Simpson E S W, Schlich R, Gieskes J, et al. 1974. Initial Reports of the Deep Sea Drilling Project, 25. U. S. Government Printing Office. : 287–346
    Sinha S T, Saha S, Longacre M, et al. 2019. Crustal architecture and nature of continental breakup along a transform margin: new insights from Tanzania-Mozambique margin. Tectonics, 38(4): 1273–1291. doi: 10.1029/2018TC005221
    Straume E O, Gaina C, Medvedev S, et al. 2019. GlobSed: updated total sediment thickness in the world's oceans. Geochemistry, Geophysics, Geosystems, 20(4): 1756–1772
    Thompson J O, Moulin M, Aslanian D, et al. 2019. New starting point for the Indian Ocean: second phase of breakup for Gondwana. Earth-Science Reviews, 191: 26–56. doi: 10.1016/j.earscirev.2019.01.018
    Vormann M, Franke D, Jokat W. 2020. The crustal structure of the southern Davie Ridge offshore northern Mozambique – A wide-angle seismic and potential field study. Tectonophysics, 778: 228370. doi: 10.1016/j.tecto.2020.228370
    Vormann M, Jokat W. 2021. The crustal structure of the Kerimbas Basin across the offshore branch of the East African Rift System. Geophysical Journal International, 226(3): 2073–2102. doi: 10.1093/gji/ggab194
    Watremez L, Leroy S, d’Acremont E, et al. 2021. The Limpopo magma-rich transform margin, south Mozambique: 1. Insights from deep-structure seismic imaging. Tectonics, 40(12): e2021TC006915
    Wu Zhaocai, Gao Jinyao, Ding Weiwei, et al. 2017. Moho depth of the South China Sea basin from three-dimensional gravity inversion with constraint points. Chinese Journal of Geophysics (in Chinese), 60(7): 2599–2613
  • 加载中
  • 文章访问数:  208
  • HTML全文浏览量:  57
  • 被引次数: 0
  • 收稿日期:  2023-02-15
  • 录用日期:  2023-05-11
  • 网络出版日期:  2023-05-30