Retrieval of snow depth on Antarctic sea ice from the FY-3D MWRI data

Zhongnan Yan Xiaoping Pang Qing Ji Yizhuo Chen Chongxin Luo Pei Fan Zeyu Liang

Zhongnan Yan, Xiaoping Pang, Qing Ji, Yizhuo Chen, Chongxin Luo, Pei Fan, Zeyu Liang. Retrieval of snow depth on Antarctic sea ice from the FY-3D MWRI data[J]. Acta Oceanologica Sinica, 2023, 42(12): 105-117. doi: 10.1007/s13131-023-2179-5
Citation: Zhongnan Yan, Xiaoping Pang, Qing Ji, Yizhuo Chen, Chongxin Luo, Pei Fan, Zeyu Liang. Retrieval of snow depth on Antarctic sea ice from the FY-3D MWRI data[J]. Acta Oceanologica Sinica, 2023, 42(12): 105-117. doi: 10.1007/s13131-023-2179-5

doi: 10.1007/s13131-023-2179-5

Retrieval of snow depth on Antarctic sea ice from the FY-3D MWRI data

Funds: The National Natural Science Foundation of China under contract No. 42076235; the Fundamental Research Funds for the Central Universities under contract No. 2042022kf0018.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The distributions of ship routes during CHINARE-35 (blue line), the ship-based observational snow depth (red dots), Alfred Wegener Institute (AWI) snow buoy (orange line) and Operation IceBridge (OIB) airborne measurements (green line) (a) and snow depth estimation involving photogrammetric images (b). The long red line in b denotes the reference ball diameter, the short red lines denote snow depth on sea ice.

    Figure  2.  Daily TB of FY-3D MWRI at different frequency time bands in open water from 2018 to 2020.

    Figure  3.  The scatter diagram between ship-based observational snow depth and combined gradient radio derived from FY-3D MWRI data.

    Figure  4.  Comparisons of ship-based observational snow depth to the snow depth estimates based on the proposed model (a), Markus98 model (b) and Comiso03 model (c), and comparisons of AWI snow buoy data to the snow depth estimates based on the proposed model (d), Markus98 model (e) and Comiso03 model (f). The color bar represents the density of the points.

    Figure  5.  The spatial distributions of averaged snow depth on Antarctic sea ice in different seasons (a–d) with its uncertainty (e–h) from 2018 to 2020. Spring: September–November, Summer: December–February, Autumn: March–May and Winter: June–August.

    Figure  6.  Time series of snow depth with its uncertainty in Antarctic Ocean (a), Weddell Sea: 60°W–20°E (b), Indian Ocean: 20°–90°E (c), Pacific Ocean: 90°–160°E (d), Ross Sea: 160°E–130°W (e) and Bellingshausen-Amundsen seas: 130°–60°W (f) from 2018 to 2020.

    Figure  7.  Comparison of FY-3D MWRI snow depth, NSIDC-AMSR2 SD and NTPDC-AMSR2 SD in the Antarctic and five seas from 2018 to 2019 for the statistic index of mean difference (a), mean absolute difference (b), standard deviation (c), and correlation coefficient (d).

    Figure  8.  The spatial distributions of monthly snow depth (January to June 2020) derived from FY-3D MWRI (a) and ICESat-2 (b), with the probability density functions (PDFs) (c) from FY-3D MWRI (red line) and ICESat-2 (blue line) in the common area.

    Figure  9.  The spatial distributions of monthly snow depth (July to December 2020) derived from FY-3D MWRI (a) and ICESat-2 (b), with the probability density functions (PDFs) (c) from FY-3D MWRI (red line) and ICESat-2 (blue line) in the common area.

    Figure  10.  Time series of FY-3D MWRI snow depth and ICESat-2 snow depth from January to December 2020 (a), and the difference between FY-3D MWRI snow depth and ICESat-2 snow depth from January to December 2020 (b).

    Table  1.   Summary of snow depth from this study, NSIDC and NTPDC

    SourceSensorPeriodSpatial resolution/kmModeling bands
    This studyMWRI2018–202012.510.65 GHz, 18.7 GHz, 36.5 GHz
    NSIDCAMSR22012 to now12.518.7 GHz, 36.5 GHz
    NTPDCSSMIS, AMSR-E, AMSR22002–202025.06.9 GHz (19.35 GHz), 36.5 GHz
    下载: 导出CSV

    Table  2.   The correlation coefficient and RMSD between the ship-based observational snow depth and different GRs derived from FY-3D MWRI

    GRCorrelation coefficientRMSD/cmGRCorrelation coefficientRMSD/cm
    GR(18V, 10V)–0.669.95GR(18H, 10H)–0.6210.43
    GR(23V, 10V)–0.6310.34GR(23H, 10H)–0.5710.96
    GR(36V, 10V)–0.729.06GR(36H, 10H)–0.699.65
    GR(23V, 18V)–0.4911.60GR(23H, 18H)–0.4112.14
    GR(36V, 18V)–0.738.95GR(36H, 18H)–0.709.54
    GR(36V, 23V)–0.709.50GR(36H, 23H)–0.6010.62
    (GR(36V, 10V) + GR(36V, 18V))/2–0.738.91
    下载: 导出CSV

    Table  3.   Differences between FY-3D MWRI snow depth, NSIDC-AMSR2 SD and NTPDC-AMSR2 SD in the Antarctic and five seas from 2018 to 2019

    RegionDataset comparisonBias/cmMAD/cmSTD/cmCorrelation coefficient
    Antarcticthis study vs. NSIDC4.275.586.420.83
    this study vs. NTPDC–9.8610.355.680.84
    Weddell Seathis study vs. NSIDC3.285.066.030.90
    this study vs. NTPDC–9.8410.265.340.87
    Indian Oceanthis study vs. NSIDC5.926.365.790.52
    this study vs. NTPDC–9.219.674.970.70
    Pacific Oceanthis study vs. NSIDC5.836.777.640.54
    this study vs NTPDC–10.0510.816.810.74
    Ross Seathis study vs. NSIDC4.415.295.860.80
    this study vs. NTPDC–9.8110.255.380.80
    Bellingshausen-Amundsen seasthis study vs. NSIDC3.245.517.460.82
    this study vs. NTPDC–10.6911.306.900.83
    下载: 导出CSV

    Table  4.   The comparisons between the OIB snow depth and FY-3D MWRI snow depth, NSIDC-AMSR2 SD, NTPDC-AMSR2 SD

    Regionsnow depth datasetPixel numberBias/cmMAD/cmRMSD/cmCorrelation coefficient
    Allthis study431–4.1711.5215.100.46
    NSIDC431–3.5811.7915.700.50
    NTPDC4316.1413.2216.930.45
    Weddell Seathis study279–4.768.2410.780.65
    NSIDC279–4.618.0210.820.66
    NTPDC2794.619.3910.900.63
    Bellingshausen-Amundsen Seathis study8112.4214.4917.780.26
    NSIDC8115.2316.7320.060.08
    NTPDC8125.7327.2230.300.14
    East Antarcticthis study71–20.7821.0523.810.27
    NSIDC71–20.9820.9824.020.38
    NTPDC71–10.1812.2915.020.39
    下载: 导出CSV
  • Arndt S, Willmes S, Dierking W, et al. 2016. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations. Journal of Geophysical Research: Oceans, 121(8): 5916–5930. doi: 10.1002/2015JC011504
    Bagnardi M, Kurtz N T, Petty A A, et al. 2021. Sea surface height anomalies of the Arctic Ocean from ICESat-2: a first examination and comparisons with CryoSat-2. Geophysical Research Letters, 48(14): e2021GL093155. doi: 10.1029/2021GL093155
    Braakmann-Folgmann A, Donlon C. 2019. Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network. The Cryosphere, 13(9): 2421–2438. doi: 10.5194/tc-13-2421-2019
    Brock J C, Wright C W, Sallenger A H, et al. 2002. Basis and methods of NASA airborne topographic mapper lidar surveys for coastal studies. Journal of Coastal Research, 18(1): 1–13
    Brucker L, Markus T. 2013. Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data. Journal of Geophysical Research: Oceans, 118(6): 2892–2905. doi: 10.1002/jgrc.20228
    Comiso J C, Cavalieri D J, Markus T. 2003. Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 243–252. doi: 10.1109/TGRS.2002.808317
    Comiso J C, Kwok R, Martin S, et al. 2011. Variability and trends in sea ice extent and ice production in the Ross Sea. Journal of Geophysical Research: Oceans, 116(C4): C04021. doi: 10.1029/2010JC006391
    Giles K A, Laxon S W, Wingham D J, et al. 2007. Combined airborne laser and radar altimeter measurements over the Fram Strait in May 2002. Remote Sensing of Environment, 111(2/3): 182–194. doi: 10.1016/j.rse.2007.02.037
    Ivanova N, Pedersen L T, Tonboe R T, et al. 2015. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations. The Cryosphere, 9(5): 1797–1817. doi: 10.5194/tc-9-1797-2015
    Jackson K, Wilkinson J, Maksym T, et al. 2013. A novel and Low-Cost Sea Ice mass balance buoy. Journal of Atmospheric and Oceanic Technology, 30(11): 2676–2688. doi: 10.1175/JTECH-D-13-00058.1
    Kacimi S, Kwok R. 2020. The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth, and ice thickness. The Cryosphere, 14(12): 4453–4474. doi: 10.5194/tc-14-4453-2020
    Kennicutt M C, Chown S L, Cassano J J, et al. 2014. Polar research: six priorities for Antarctic science. Nature, 512(7512): 23–25. doi: 10.1038/512023a
    Kern S, Ozsoy B. 2019. An attempt to improve snow depth retrieval using satellite microwave radiometry for rough Antarctic Sea Ice. Remote Sensing, 11(19): 2323. doi: 10.3390/rs11192323
    Kern S, Ozsoy-Cicek B, Willmes S, et al. 2011. An intercomparison between AMSR-E snow-depth and satellite C-and Ku-band radar backscatter data for Antarctic sea ice. Annals of Glaciology, 52(57): 279–290. doi: 10.3189/172756411795931750
    Kern S, Ozsoy-Çiçek B. 2016. Satellite remote sensing of snow depth on Antarctic Sea Ice: an inter-comparison of two empirical approaches. Remote Sensing, 8(6): 450. doi: 10.3390/rs8060450
    Kern S, Spreen G. 2015. Uncertainties in Antarctic sea-ice thickness retrieval from ICESat. Annals of Glaciology, 56(69): 107–119. doi: 10.3189/2015AoG69A736
    Kwok R, Cunningham G F. 2015. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2045): 20140157,
    Kwok R, Kacimi S, Markus T, et al. 2019. ICESat-2 surface height and sea ice freeboard assessed with ATM lidar acquisitions from Operation IceBridge. Geophysical Research Letters, 46(20): 11228–11236. doi: 10.1029/2019GL084976
    Kwok R, Petty A A, Bagnardi M, et al. 2021. Refining the sea surface identification approach for determining freeboards in the ICESat-2 sea ice products. The Cryosphere, 15(2): 821–833. doi: 10.5194/tc-15-821-2021
    Kwok R, Untersteiner N. 2011. The thinning of Arctic sea ice. Physics Today, 64(4): 36–41. doi: 10.1063/1.3580491
    Landy J C, Dawson G J, Tsamados M, et al. 2022. A year-round satellite sea-ice thickness record from CryoSat-2. Nature, 609(7927): 517–522. doi: 10.1038/s41586-022-05058-5
    Li Lele, Chen Haihua, Guan Lei. 2019. Retrieval of snow depth on sea ice in the arctic using the FengYun-3B microwave radiation imager. Journal of Ocean University of China, 18(3): 580–588. doi: 10.1007/s11802-019-3873-y
    Li Lele, Chen Haihua, Guan Lei. 2021. Retrieval of snow depth on Arctic Sea Ice from the FY3B/MWRI. Remote Sensing, 13(8): 1457. doi: 10.3390/rs13081457
    Li Haili, Ke Changqing, Zhu Qinghui, et al. 2022. A deep learning approach to retrieve cold-season snow depth over Arctic sea ice from AMSR2 measurements. Remote Sensing of Environment, 269: 112840. doi: 10.1016/j.rse.2021.112840
    Liu Ningning, Chen Haihua, Ni Kun, et al. 2021. Retrieval of thin ice thickness from FY-3D/MWRI brightness temperature in the Arctic. In: Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: IEEE, 2021: 5637−5640,
    Liu Kangwen, He Jieying, Chen Haonan. 2022. Precipitation retrieval from Fengyun-3D MWHTS and MWRI data using deep learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15: 7619–7630. doi: 10.1109/JSTARS.2022.3203206
    Lo E. 2005. Gaussian error propagation applied to ecological data: post-ice-storm-downed woody biomass. Ecological Monographs, 75(4): 451–466. doi: 10.1890/05-0030
    Maksym T, Markus T. 2008. Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. Journal of Geophysical Research: Oceans, 113(C2): C02S12. doi: 10.1029/2006JC004085
    Markus T, Cavalieri D J. 1998. Snow depth distribution over sea ice in the southern Ocean from satellite passive microwave data. In: Jeffries M O, ed. Antarctic Sea Ice: Physical Processes, Interactions and Variability. Washington, DC, USA: American Geophysical Union, 19–40,
    Markus T, Cavalieri D J. 2006. Interannual and regional variability of Southern Ocean snow on sea ice. Annals of Glaciology, 44: 53–57. doi: 10.3189/172756406781811475
    Markus T, Massom R, Worby A, et al. 2011. Freeboard, snow depth and sea-ice roughness in East Antarctica from in situ and multiple satellite data. Annals of Glaciology, 52(57): 242–248. doi: 10.3189/172756411795931570
    Markus T, Powell D C, Wang J R. 2006. Sensitivity of passive microwave snow depth retrievals to weather effects and snow evolution. IEEE Transactions on Geoscience and Remote Sensing, 44(1): 68–77. doi: 10.1109/TGRS.2005.860208
    Martin C F, Krabill W B, Manizade S S, et al. 2012. Airborne topographic mapper calibration procedures and accuracy assessment. Washington, DC, USA: National Aeronautics and Space Administration, 32
    Massom R A, Drinkwater M R, Haas C. 1997. Winter snow cover on sea ice in the Weddell Sea. Journal of Geophysical Research: Oceans, 102(C1): 1101–1117. doi: 10.1029/96JC02992
    Massom R, Reid P, Stammerjohn S, et al. 2013. Change and variability in East Antarctic sea ice seasonality, 1979/80–2009/10. PLoS One, 8(5): e64756,
    Nicolaus M, Hoppmann M, Arndt S, et al. 2021. Snow depth and air temperature seasonality on sea ice derived from snow buoy measurements. Frontiers in Marine Science, 8: 655446. doi: 10.3389/fmars.2021.655446
    Ozsoy-Cicek B, Ackley S, Xie Hongjie, et al. 2013. Sea ice thickness retrieval algorithms based on in situ surface elevation and thickness values for application to altimetry. Journal of Geophysical Research: Oceans, 118(8): 3807–3822. doi: 10.1002/jgrc.20252
    Pang Xiaoping, Chen Yizhuo, Ji Qing, et al. 2022. An improved algorithm for the retrieval of the Antarctic Sea Ice freeboard and thickness from ICESat-2 altimeter data. Remote Sensing, 14(5): 1069. doi: 10.3390/rs14051069
    Parkinson C L. 2019. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 116(29): 14414–14423. doi: 10.1073/pnas.1906556116
    Petrich C, Eicken H, Polashenski C M, et al. 2012. Snow dunes: a controlling factor of melt pond distribution on Arctic sea ice. Journal of Geophysical Research: Oceans, 117(C9): C09029. doi: 10.1029/2012JC008192
    Rostosky P, Spreen G, Farrell S L, et al. 2018. Snow depth retrieval on Arctic sea ice from passive microwave radiometers—Improvements and extensions to multiyear ice using lower frequencies. Journal of Geophysical Research: Oceans, 123(10): 7120–7138. doi: 10.1029/2018JC014028
    Shen Xiaoyi, Ke Changqing, Li Haili. 2022. Snow depth product over Antarctic sea ice from 2002 to 2020 using multisource passive microwave radiometers. Earth System Science Data, 14(2): 619–636. doi: 10.5194/essd-14-619-2022
    Sturm M, Morris K, Massom R. 1998. The winter snow cover of the West Antarctic pack ice: Its spatial and temporal variability. In: Jeffries M O, ed. Antarctic Sea Ice: Physical Processes, Interactions and Variability. Washington, DC, USA: American Geophysical Union, 1–18,
    Sturm M, Perovich D K, Holmgren J. 2002. Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea. Journal of Geophysical Research: Oceans, 107(C10): 8043. doi: 10.1029/2000JC000409
    Willmes S, Nicolaus M, Haas C. 2014. The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: a model study. The Cryosphere, 8(3): 891–904. doi: 10.5194/tc-8-891-2014
    Worby A P, Geiger C A, Paget M J, et al. 2008a. Thickness distribution of Antarctic sea ice. Journal of Geophysical Research: Oceans, 113(C5): C05S92. doi: 10.1029/2007JC004254
    Worby A P, Jeffries M O, Weeks W F, et al. 1996. The thickness distribution of sea ice and snow cover during late winter in the Bellingshausen and Amundsen Seas, Antarctica. Journal of Geophysical Research: Oceans, 101(C12): 28441–28455. doi: 10.1029/96JC02737
    Worby A P, Markus T, Steer A D, et al. 2008b. Evaluation of AMSR-E snow depth product over East Antarctic sea ice using in situ measurements and aerial photography. Journal of Geophysical Research: Oceans, 113(C5): C05S94. doi: 10.1029/2007JC004181
    Zege E, Katsev I, Malinka A, et al. 2008. New algorithm to retrieve the effective snow grain size and pollution amount from satellite data. Annals of Glaciology, 49: 139–144. doi: 10.3189/172756408787815004
    Zhao Xi, Chen Ying, Kern S, et al. 2022. Sea Ice concentration derived from FY-3D MWRI and its accuracy assessment. IEEE Transactions on Geoscience and Remote Sensing, 60: 4300418. doi: 10.1109/TGRS.2021.3063272
    Zheng Lei, Zhou Chunxia, Zhang Tingjun, et al. 2020. Recent changes in pan-Antarctic region surface snowmelt detected by AMSR-E and AMSR2. The Cryosphere, 14(11): 3811–3827. doi: 10.5194/tc-14-3811-2020
    Zwally H J, Yi Donghu, Kwok R, et al. 2008. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. Journal of Geophysical Research: Oceans, 113(C2): C02S15. doi: 10.1029/2007JC004284
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  179
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 录用日期:  2023-02-28
  • 网络出版日期:  2023-06-06
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回