A typhoon-induced storm surge numerical model with GPU acceleration based on an unstructured spherical centroidal Voronoi tessellation grid

Yuanyong Gao Fujiang Yu Cifu Fu Jianxi Dong Qiuxing Liu

Yuanyong Gao, Fujiang Yu, Cifu Fu, Jianxi Dong, Qiuxing Liu. A typhoon-induced storm surge numerical model with GPU acceleration based on an unstructured spherical centroidal Voronoi tessellation grid[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2175-9
Citation: Yuanyong Gao, Fujiang Yu, Cifu Fu, Jianxi Dong, Qiuxing Liu. A typhoon-induced storm surge numerical model with GPU acceleration based on an unstructured spherical centroidal Voronoi tessellation grid[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2175-9

doi: 10.1007/s13131-023-2175-9

A typhoon-induced storm surge numerical model with GPU acceleration based on an unstructured spherical centroidal Voronoi tessellation grid

Funds: The National Natural Science Foundation of China under contract No. 42076214.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Schematic diagram of the open boundary.

    Figure  2.  Variable locations on the SCVT grid.

    Figure  4.  The resolution of the SCVT grid used in the simulation transitions from 20 km offshore to 2 km nearshore.

    Figure  3.  Six typical typhoons that made landfall in China. The star (★) is the location of the tide gauges.

    Figure  5.  Maximum storm surges during typhoon-induced storm surge processes.

    Figure  6.  Storm surge processes at the representative stations. The black scatter shows the observed values, and the green line and red line show the simulated values of ADCIRC model and our model respectively (unit: cm).

    Table  1.   Comparison of simulated and measured maxinum storm surge and phases

    TyphoonTide gaugesMaximum storm surge/cmMaximum storm surge error/cmPhase error/h
    OBSADCIRCNMEFCADCIRCNMEFCADCIRCNMEFC
    1323Longgang399381396–18–301
    1415Nandu49551849523023
    1522Shuidong2322352363400
    1614Shijing288269291–19310
    1822Sanzao33934734384–10
    1909Haimen31233231920721
    下载: 导出CSV
  • Chen Changsheng, Liu Hedong, Beardsley R C. 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Journal of Atmospheric & Oceanic Technology, 20(1): 159–186
    Dietrich J C, Zijlema M, Westerink J J, et al. 2011. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coastal Engineering, 58(1): 45–65. doi: 10.1016/j.coastaleng.2010.08.001
    Dube S K, Rao A D, Sinha P C, et al. 1997. Storm surge in the Bay of Bengal and Arabian Sea: the problem and its prediction. Mausam, 48(2): 283–304. doi: 10.54302/mausam.v48i2.4012
    Engwirda D. 2017. JIGSAW-GEO (1.0): JIGSAW-GEO (1.0): Locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere. Geoscientific Model Development, 10(6): 2117–2140. doi: 10.5194/gmd-10-2117-2017
    Frank N L, Husain S A. 1971. The deadliest tropical cyclone in history. Bulletin of the American Meteorological Society, 52(6): 438–445. doi: 10.1175/1520-0477(1971)052<0438:TDTCIH>2.0.CO;2
    Higaki M, Hayashibara H, Nozaki F. 2009. Outline of the storm surge prediction model at the Japan Meteorological Agency. RSMC Tokyo-Typhoon Center Technical Review, 2009(11): 25–38
    Hubbert G D, Holland G J, Leslie L M, et al. 1991. A real-time system for forecasting tropical cyclone storm surges. Weather and Forecasting, 6(1): 86–97. doi: 10.1175/1520-0434(1991)006<0086:ARTSFF>2.0.CO;2
    Kohno N, Dube S K, Entel M, et al. 2018. Recent progress in storm surge forecasting. Tropical Cyclone Research and Review, 7(2): 128–139
    Lu Xiaoqin, Yu Hui, Ying Ming, et al. 2021. Western North Pacific tropical cyclone database created by the China meteorological administration. Advances in Atmospheric Sciences, 38(4): 690–699. doi: 10.1007/s00376-020-0211-7
    Muis S, Verlaan M, Winsemius H C, et al. 2016. A global reanalysis of storm surges and extreme sea levels. Nature Communications, 7: 11969. doi: 10.1038/ncomms11969
    Rappaport E N. 2014. Fatalities in the United States from Atlantic tropical cyclones: new data and interpretation. Bulletin of the American Meteorological Society, 95(3): 341–346. doi: 10.1175/BAMS-D-12-00074.1
    Ringler T D, Thuburn J, Klemp J B, et al. 2010. A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. Journal of Computational Physics, 229(9): 3065–3090. doi: 10.1016/j.jcp.2009.12.007
    Skamarock W C, Klemp J B, Duda M G, et al. 2012. A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggering. Monthly Weather Review, 140(9): 3090–3105. doi: 10.1175/MWR-D-11-00215.1
    Thuburn J, Ringler T D, Skamarock W C, et al. 2009. Numerical representation of geostrophic modes on arbitrarily structured C-grids. Journal of Computational Physics, 228(22): 8321–8335. doi: 10.1016/j.jcp.2009.08.006
    Yu Fujiang, Fu Cifu, Guo Honglin, et al. 2020. Modern Technologies and Application in Storm Surge Forecasting (in Chinese). Beijing: China Science Publishing & Media, 43–47
    Zhou Lilong, Feng Jinming, Hua Lijuan. 2020. Extending square conservation to arbitrarily structured C-grids with shallow water equations. Geoscientific Model Development, 13(2): 581–595. doi: 10.5194/gmd-13-581-2020
  • 加载中
计量
  • 文章访问数:  148
  • HTML全文浏览量:  61
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-07-27

目录

    /

    返回文章
    返回