Geological context and vents morphology in the ultramafic-hosted Tianxiu field, Carlsberg Ridge

Jin Liang Chunhui Tao Xiangxin Wang Cheng Su Wei Gao Yadong Zhou Weikun Xu Xiaohe Liu Zhongjun Ding

Jin Liang, Chunhui Tao, Xiangxin Wang, Cheng Su, Wei Gao, Yadong Zhou, Weikun Xu, Xiaohe Liu, Zhongjun Ding. Geological context and vents morphology in the ultramafic-hosted Tianxiu field, Carlsberg Ridge[J]. Acta Oceanologica Sinica, 2023, 42(9): 62-70. doi: 10.1007/s13131-023-2157-y
Citation: Jin Liang, Chunhui Tao, Xiangxin Wang, Cheng Su, Wei Gao, Yadong Zhou, Weikun Xu, Xiaohe Liu, Zhongjun Ding. Geological context and vents morphology in the ultramafic-hosted Tianxiu field, Carlsberg Ridge[J]. Acta Oceanologica Sinica, 2023, 42(9): 62-70. doi: 10.1007/s13131-023-2157-y

doi: 10.1007/s13131-023-2157-y

Geological context and vents morphology in the ultramafic-hosted Tianxiu field, Carlsberg Ridge

Funds: The National Key Research and Development Program of China under contract No. 2017YFC0306603; the Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources under contract Nos JG1905 and SZ2201; the National Natural Science Foundation of China under contract No. 41806076; and the National Key Research and Development Program of China under contract No. 2021YFC2801705.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Bathymetric map of the Tianxiu hydrothermal field on the Carlsberg Ridge (CR) (the bathymetric data were collected by multi-beam surveys of Chinese Dayang Cruise in 2013). The red dashed line indicates the ridge axis. CIR: Central Indian Ridge; SWIR: Southwest Indian Ridge; SEIR: Southeast Indian Ridge. OCC: Oceanic Core Complex.

    Figure  2.  Seafloor morphology of the Tianxiu hydrothermal field. Bathymetric map of the study area showing track of the submersible Jiaolong’s dives in Chinese Dayang Cruise 72nd, the white box shows the range of the side scan (the bathymetric data were collected by multi-beam surveys of Chinese Dayang Cruise 72nd in 2022) (a); colored and corresponding backscatter image showing the main area of the P site (white and red dashed lines, respectivelys) (b, c); scattered serpentine peridotite fragments (d); fault scratch and steps (e); mylonitized outcrop, white dotted line indicates the approximate strike of the fault (f); accumulation of hydrothermal deposits can be seen at the landslides (g); sulfide distributed in lines (h); pelagic sediments showing a certain thickness of more than 50 cm (the square pit is caused by box sampler) (i). All photos or videos were taken in Chinese Dayang Cruise 72nd in 2022.

    Figure  3.  Representative chimney morphology in Tianxiu hydrothermal field. Mosaic of the Y chimney (similar in shape to the Chinese classical folk instrument “Yu”) (a); focused fluid flow emitting for the top of the Y structure (b); beehive structures at the middle of the Y structure showing dominance of alvinocaridid shrimps (c); the boundary between the brownish sulfide base and the dark-gray active chimneys (d); massive sulfide and chimney fragments at the foot of the Y site (e); inactive chimneys complex in P site (similar in shape to the Chinese classical folk instrument “Pan Flute” P) (f), showing small flanges with ~10 cm in width (g); lined distributed chimneys in P site showing white shells of mussels indicating waning stage (h); beehive diffusers shimmering light smoke surrounded by toppled chimney clusters in P site with yellowish-brown oxide on the surface (i), showing anemones and Alviniconcha marisindica snails (j). All photos or videos were taken in Chinese Dayang Cruise 72nd in 2022.

    Figure  4.  Representative chimney fragments in Tianxiu hydrothermal field. a. Toppled chimney clusters in P site with yellowish-brown oxide on the surface, partly in dark gray (b), indicating status of still active. c. The extinct “chimney jungle” in P site, showing absence of large fluid conduit (d). e. Chimney fragment collected from Y site showing multi fluid conduits wall mainly composed of pyrite and sphalerite. f. Chimney fragment collected from Y site showing major fluid conduit wall mainly composed of pyrite and sphalerite, showing reddish-brown pyrrhotite rich layer. g. Another chimney fragment showing major reddish-brown pyrrhotite rich layer; h. Inactive chimney fragment collected from P site, showing sphalerite rich and multi micro fluid conduits. i. Chimney fragment of focused fluid flow, rich in chalcopyrite and pyrite composing the fluid conduit walls, collected from other high-temperature hydrothermal area is taken here for comparison. py: pyrite; sp: sphalerite; po: pyrrhotite; ccp: chalcopyrite. The scale bar represents 5 cm.

    Figure  5.  Schematic model for fluid circulation at Tianxiu hydrothermal field.

    Table  1.   Ultramafic-hosted or related hydrothermal fields reported in the Indian Ocean

    Site Location Latitude Longitude Water
    depth/m
    Full
    spreading
    rate/
    (mm·a−1)
    Activity Host rock Tectonica control Deposit of
    mineralization
    Source
    Tianxiu CR 3.70°N 63.83°E 3 350 24.5 active ultramafic rocks detachment fault chimney, mound this study
    Onnuri CIR 11.42°S 66.42°E 2 000 34.4 diffuse ultramafic rocks detachment fault breccia Lim et al. (2022)
    Cheoeum CIR 12.67°S 66.20°E 3 100 36.7 diffuse ultramafic rocks oceanic core complexes chimney, mound Choi et al. (2021)
    Yokoniwa CIR 25.27°S 70.07°E 2 500 47.2 inactive ultramafic rocks non-transform offset small sulfide chimneys Fujii et al. (2016)
    Kairei CIR 25.32°S 70.03°E 2 450 47.5 active basalt detachment fault mound, chimeny,
    massive sulfide, breccia
    Nakamura et al. (2009)
    Wang et al. (2018)
    Tianzuo SWIR 27.95°S 63.53°E 3 630 12 inactive ultramafic rocks detachment fault breccia, mound Ding et al. (2021)
    Longqi SWIR 37.78°S 49.65°E 2 700 14 active basalt detachment fault mound, chimeny,
    massive sulfide, breccia
    Tao et al. (2014)
    Yuhuang SWIR 37.94°S 49.26°E 1 500 14 inactive basalt detachment fault massive sulfide, breccia Yu et al. (2021)
    Note: CR: Carlsberg Ridge; CIR: Central Indian Ridge; SWIR: Southwest Indian Ridge.
    下载: 导出CSV
  • Alt J C. 1995. Subseafloor processes in mid-ocean ridge hydrothennal systems. In: Humphris S E, Zierenberg R A, Mullineaux L S, et al., eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington, DC: American Geophysical Union, 91: 85–114
    Baker E T. 2017. Exploring the ocean for hydrothermal venting: New techniques, new discoveries, new insights. Ore Geology Reviews, 86: 55–69. doi: 10.1016/j.oregeorev.2017.02.006
    Barreyre T, Escartín J, Garcia R, et al. 2012. Structure, temporal evolution, and heat flux estimates from the Lucky Strike deep-sea hydrothermal field derived from seafloor image mosaics. Geochemistry, Geophysics, Geosystems, 13(4): Q04007
    Beaulieu S E, Baker E T, German C R. 2015. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?. Deep-Sea Research Part II: Topical Studies in Oceanography, 121: 202–212. doi: 10.1016/j.dsr2.2015.05.001
    Berkenbosch H A, De Ronde C E J, Gemmel J B, et al. 2012. Mineralogy and formation of black smoker chimneys from Brothers submarine volcano, Kermadec arc. Economic Geology, 107(8): 1613–1633. doi: 10.2113/econgeo.107.8.1613
    Cai Yiyang, Han Xiqiu, Qiu Zhongyan, et al. 2020. Characteristics, distribution and implication of hydrothermal minerals in Tianxiu Hydrothermal Field, Carlsberg Ridge, Northwest Indian Ocean. Marine Geology & Quaternary Geology, 40(5): 36–45
    Chen Yang, Han Xiqiu, Wang Yejian, et al. 2020. Precipitation of calcite veins in serpentinized harzburgite at Tianxiu hydrothermal field on carlsberg ridge (3.67°N), Northwest Indian Ocean: Implications for fluid circulation. Journal of Earth Science, 31(1): 91–101. doi: 10.1007/s12583-020-0876-y
    Choi S K, Pak S J, Kim J, et al. 2021. Gold and tin mineralisation in the ultramafic-hosted Cheoeum vent field, Central Indian Ridge. Mineralium Deposita, 56(5): 885–906. doi: 10.1007/s00126-020-01012-5
    de Ronde C E J, Hannington M D, Stoffers P, et al. 2005. Evolution of a submarine magmatic-hydrothermal system: Brothers volcano, southern Kermadec arc, New Zealand. Economic Geology, 100(6): 1097–1133. doi: 10.2113/gsecongeo.100.6.1097
    Delaney J R, Robigou V, McDuff R E, et al. 1992. Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 97(B13): 19663–19682. doi: 10.1029/92JB00174
    Ding Teng, Tao Chunhui, Dias Á A, et al. 2021. Sulfur isotopic compositions of sulfides along the Southwest Indian Ridge: implications for mineralization in ultramafic rocks. Mineralium Deposita, 56(5): 991–1006. doi: 10.1007/s00126-020-01025-0
    Ding Teng, Wang Jia, Tao Chunhui, et al. 2022. Trace-element compositions of sulfides from inactive Tianzuo hydrothermal field, Southwest Indian Ridge: Implications for ultramafic rocks hosting mineralization. Ore Geology Reviews, 140: 104421. doi: 10.1016/j.oregeorev.2021.104421
    Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In: Rona P A, Devey C W, Dyment J, eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union, 188: 321–367
    Fouquet Y, Cherkashov G, Charlou J L, et al. 2008. Serpentine cruise-ultramafic hosted hydrothermal deposits on the Mid-Atlantic Ridge: First submersible studies on Ashadze 1 and 2, Logatchev 2 and Krasnov vent fields. InterRidge News, 17: 16–21
    Fouquet Y, Knott R, Cambon P, et al. 1996. Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the East Pacific Rise. Earth and Planetary Science Letters, 144(1−2): 147–162. doi: 10.1016/0012-821X(96)00142-2
    Fouquet Y, Wafik A, Cambon P, et al. 1993. Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23°N). Economic Geology, 88(8): 2018–2036. doi: 10.2113/gsecongeo.88.8.2018
    Fujii M., Okino K., Sato T, et al. 2016. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge. Earth & Planetary Science Letters, 441: 26–37
    Gallant R M, Von Damm K L. 2006. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge. Geochemistry, Geophysics, Geosystems, 7(6): Q06018
    Gamo T, Chiba H, Yamanaka T, et al. 2001. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. Earth and Planetary Science Letters, 193(3−4): 371–379. doi: 10.1016/S0012-821X(01)00511-8
    Genna D, Gaboury D, Roy G. 2014. Evolution of a volcanogenic hydrothermal system recorded by the behavior of LREE and Eu: Case study of the Key Tuffite at Bracemac-McLeod deposits, Matagami, Canada. Ore Geology Reviews, 63: 160–177. doi: 10.1016/j.oregeorev.2014.04.019
    German C R, Baker E T, Mevel C, et al. 1998. Hydrothermal activity along the Southwest Indian Ridge. Nature, 395(6701): 490–493. doi: 10.1038/26730
    Halbach P, Blum N, Munch U, et al. 1998. Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Mineralium Deposita, 33: 302–309. doi: 10.1007/s001260050149
    Hannington M D, de Ronde C E J, Petersen S. 2005. Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist J W, Thompson J F H, Goldfarb R J, eds. Economic Geology 100th Anniversary Volume. Littleton, CO: Society of Economic Geologists, 111–141
    Hannington M, Jamieson J, Monecke T, et al. 2011. The abundance of seafloor massive dulfide deposits. Geology, 39(12): 1155–1158. doi: 10.1130/G32468.1
    Hannington M D, Tivey M K, Larocque A C L, et al. 1995. The occurrence of gold in sulfide deposits of the TAG hydrothermal field, Mid-Atlantic Ridge. The Canadian Mineralogist, 33: 1285–1310
    Haymon R M. 1983. Growth history of hydrothermal black smoker chimneys. Nature, 301(5902): 695–698. doi: 10.1038/301695a0
    Haymon R M, Kastner M. 1981. Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis. Earth and Planetary Science Letters, 53(3): 363–381. doi: 10.1016/0012-821X(81)90041-8
    Hekinian R, Francheteaub J, Ballardc R D. 1985. Morphology and evolution of hydrothermal deposits at the axis of the East Pacific Rise. Oceanologica Acta, 8(2): 147–155
    Herzig P M, Hannington M D. 1995. Polymetallic massive sulfides at the modern seafloor a review. Ore Geology Reviews, 10(2): 95–115. doi: 10.1016/0169-1368(95)00009-7
    Jamieson J W, Hannington M D, Petersen S. 2017. Seafloor massive sulfide resources. In: Encyclopedia of Maritime and Offshore Engineering. Chichester: John Wiley & Sons
    Jiang Zijing, Han Xiqiu, Wang Yejian, et al. 2015. Characteristics of hydrothermal anomalies in water bodies near Tianshui hydrothermal area of Karlsberg Ridge in the Northwest Indian Ocean. Acta Mineralogica Sinica (in Chinese), 35(S1): 765–766
    Kelley D S, Baross J A, Delaney J R. 2002. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annual Review of Earth and Planetary Sciences, 30: 385–491. doi: 10.1146/annurev.earth.30.091201.141331
    Kinsey J C, German C R. 2013. Sustained volcanically-hosted venting at ultraslow ridges: Piccard Hydrothermal Field, Mid-Cayman Rise. Earth and Planetary Science Letters, 380: 162–168. doi: 10.1016/j.jpgl.2013.08.001
    Koski R A, Jonasson I R, Kadko D C, et al. 1994. Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research: Solid Earth, 99(B3): 4813–4832. doi: 10.1029/93JB02871
    Lim D, Kim J, Kim W, et al. 2022. Characterization of geochemistry in hydrothermal sediments from the newly discovered onnuri vent field in the middle region of the Central Indian Ridge. Frontiers in Marine Science, 9: 810949. doi: 10.3389/fmars.2022.810949
    Ludwig K A, Kelley D S, Butterfield D A, et al. 2006. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochimica et Cosmochimica Acta, 70(14): 3625–3645. doi: 10.1016/j.gca.2006.04.016
    Münch U, Halbach P, Fujimoto H, et al. 2000. Sea-floor hydrothermal mineralization from the Mt. Jourdanne, Southwest Indian Ridge. JAMSTEC, 16: 125–132
    Melchert B, Devey C W, German C R, et al. 2008. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275(1−2): 61–69. doi: 10.1016/j.jpgl.2008.08.010
    Meng Xingwei, Li Xiaohu, Chu Fengyou, et al. 2019. Multi-stage growth and fluid evolution of a hydrothermal sulphide chimney in the East Pacific Ridge 1–2°S hydrothermal field: constraints from in situ sulphur isotopes. Geological Magazine, 156(6): 989–1002. doi: 10.1017/S0016756818000316
    Murton B J, Baker E T, Sands C M, et al. 2006. Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean. Geophysical Research Letters, 33(10): L10608
    Nakamura K, Morishita T, Bach W, et al. 2009. Serpentinized troctolites exposed near the Kairei Hydrothermal Field, Central Indian Ridge: Insights into the origin of the Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth & Planetary Science Letters, 280: 128–136
    Olatunde P S, Akintoye A E. 2021. Integrated geochemical investigations on Fe-Mn nodules, polymetallic sulfides and Fe-Mn oxides recovered from marine sediments of Carlsberg Ridge, Northwest Indian Ocean. Advances in Environal Studies, 5(1): 394–403
    Peng Xiaotong, Zhou Huaiyang. 2005. Growth history of hydrothermal chimneys at EPR 9–10°N: A structural and mineralogical study. Science in China Series D: Earth Sciences, 48(11): 1891–1899. doi: 10.1360/04yd0029
    Petersen S, Kuhn K, Kuhn T, et al. 2009. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos, 112(1−2): 40–56. doi: 10.1016/j.lithos.2009.02.008
    Qiu Zhongyan, Han Xiqiu, Li Mou, et al. 2021. The temporal variability of hydrothermal activity of wocan hydrothermal field, Carlsberg Ridge, Northwest Indian Ocean. Ore Geology Reviews, 132: 103999. doi: 10.1016/j.oregeorev.2021.103999
    Raju K A K, Chaubey A K, Amarnath D, et al. 2008. Morphotectonics of the Carlsberg Ridge between 62°20′ and 66°20E, Northwest Indian Ocean. Marine Geology, 252(3−4): 120–128. doi: 10.1016/j.margeo.2008.03.016
    Robigou V, Delaney J R, Stakes D S. 1993. Large massive sulfide deposits in a newly discovered active hydrothermal system, the High-Rise field, Endeavour segment, Juan de Fuca Ridge. Geophysical Research Letters, 20(17): 1887–1890. doi: 10.1029/93GL01399
    Sheng Mingwei, Tang Songqi, Cui Zhuang, et al. 2020. A joint framework for underwater sequence images stitching based on deep neural network convolutional neural network. International Journal of Advanced Robotic Systems, 17(2): 1–14
    Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge. Chinese Science Bulletin, 59: 2266–2276
    Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40(1): 47–50. doi: 10.1130/G32389.1
    Tao Chunhui, Wu Guanghai, Deng Xianming, et al. 2013. New discovery of seafloor hydrothermal activity on the Indian Ocean Carlsberg Ridge and Southern North Atlantic Ridge—progress during the 26th Chinese COMRA cruise. Acta Oceanologica Sinica, 32(8): 85–88. doi: 10.1007/s13131-013-0345-x
    Tivey M K. 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1): 50–65. doi: 10.5670/oceanog.2007.80
    Tivey M K, Stakes D S, Cook T L, et al. 1999. A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: Results of a petrologic and geochemical study. Journal of Geophysical Research: Solid Earth, 104(B10): 22859–22883. doi: 10.1029/1999JB900107
    Van Dover C L, Humphris S E, Fornari D, et al. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science, 294(5543): 818–823. doi: 10.1126/science.1064574
    Von Damm K L. 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris S E, Zierenberg R A, Mullineaux L S, et al., eds. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington, DC : American Geophysical Union, 222–247
    Von Damm K L, Buttermore L G, Oosting S E, et al. 1997. Direct observation of the evolution of a seafloor ‘black smoker’ from vapor to brine. Earth and Planetary Science Letters, 149(1−4): 101–111. doi: 10.1016/S0012-821X(97)00059-9
    Wang Yejian, Han Xiqiu, Petersen S, et al. 2018. Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge. Minerals, 8: 526
    Wang Yejian, Han Xiqiu, Zhou Yadong, et al. 2021. The Daxi Vent Field: An active mafic-hosted hydrothermal system at a non-transform offset on the slow-spreading Carlsberg Ridge, 6°48′N. Ore Geology Reviews, 129: 103888. doi: 10.1016/j.oregeorev.2020.103888
    Webber A P, Roberts S, Murton B J, et al. 2017. The formation of gold-rich seafloor sulfide deposits: Evidence from the Beebe hydrothermal vent field, Cayman Trough. Geochemistry, Geophysics, Geosystems, 18(6): 2011–2027
    Wheeler A J, Murton B, Copley J, et al. 2013. Moytirra: Discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores. Geochemistry, Geophysics, Geosystems, 14(10): 4170–4184
    Yang Lei, Wang Xiangxin, Zhang Tongwei, et al. 2021b. Research on the application technology of manned submersible bathymetric sidescan sonar system in the abyss zone. In: 2021 OES China Ocean Acoustics. Harbin: IEEE, 293–298
    Yang Ming, Wang Yejian, Han Xiqiu, et al. 2021a. Gold mineralization in the ultramafic-hosted seafloor hydrothermal systems: examples from the Tianxiu Vent Field, Carlsberg Ridge. Geological Review (in Chinese), 67(S1): 173–174
    You Chenfeng, Bickle M J. 1998. Evolution of an active sea-floor massive sulphide deposit. Nature, 394(6694): 668–671. doi: 10.1038/29279
    Yu Junyu, Tao Chunhui, Liao Shili, et al. 2021. Resource estimation of the sulfide-rich deposits of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geology Reviews, 134: 104169. doi: 10.1016/j.oregeorev.2021.104169
    Zhou Yadong, Chen Chong, Zhang Dongsheng, et al. 2022. Delineating biogeographic regions in Indian Ocean deep-sea vents and implications for conservation. Diversity and Distributions, 28(12): 2858–2870. doi: 10.1111/ddi.13535
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  97
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 录用日期:  2022-11-01
  • 网络出版日期:  2023-10-11
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回