Study on strength properties and soil behaviour type classification of Huanghe River Delta silts based on variable rate piezocone penetration test

Yunuo Liu Guoqing Lin Yan Zhang Shenggui Deng Lei Guo Tao Liu

Yunuo Liu, Guoqing Lin, Yan Zhang, Shenggui Deng, Lei Guo, Tao Liu. Study on strength properties and soil behaviour type classification of Huanghe River Delta silts based on variable rate piezocone penetration test[J]. Acta Oceanologica Sinica, 2023, 42(11): 146-158. doi: 10.1007/s13131-022-2113-2
Citation: Yunuo Liu, Guoqing Lin, Yan Zhang, Shenggui Deng, Lei Guo, Tao Liu. Study on strength properties and soil behaviour type classification of Huanghe River Delta silts based on variable rate piezocone penetration test[J]. Acta Oceanologica Sinica, 2023, 42(11): 146-158. doi: 10.1007/s13131-022-2113-2

doi: 10.1007/s13131-022-2113-2

Study on strength properties and soil behaviour type classification of Huanghe River Delta silts based on variable rate piezocone penetration test

Funds: The National Natural Science Foundation of China under contract No. U2006213.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Grain distribution curves of Huanghe River Delta (HRD) silts.

    Figure  2.  One-dimensional compression test results.

    Figure  3.  The ShearTrac-II System.

    Figure  4.  Monotonic shearing test results: the effective stress path (a), stress-strain relationship (b), equivalent excess pore pressure-strain relationship (c).

    Figure  5.  The laboratory penetration test system.

    Figure  6.  Micro-CPTu.

    Figure  7.  Comparisons of penetration test results in Malaysian kaolin.

    Figure  8.  Grain distribution curves of Huanghe River Delta (HRD) silts with different clay content.

    Figure  9.  One-dimensional compression test results of Huanghe River Delta (HRD) silts with different clay content.

    Figure  10.  Test results $ {q}_{t} $ vs. $ h $: remolded Huanghe River Delta silts (a); 20% C mixture (b); 30% C mixture (c).

    Figure  11.  Influence of CPTu penetration rate on friction angle.

    Figure  12.  Test results under different penetration rates in Huanghe River Delta (HRD) silts with different clay content: remolded HRD silts (a); 20% C (clay) mixture (b); 30% C (clay) mixture (c).

    Figure  13.  Clay contents effect curves of silt and clay mixtures with different penetration rate: ${Q}_{{{t}}}$ vs. clay content (a); $ {B}_{q} $ vs. clay content (b).

    Figure  14.  Test results for Huanghe River Delta (HRD) silts with different clay contents: ${q}_{{{t}}}$ vs. $ h $ (a); ${{{f}}}_{\rm s}$ vs. $ h $ (b).

    Figure  15.  Results of penetration experiment: depth distribution of friction ratio (a) ; depth distribution of $ {B}_{q}\left(\mathrm{b}\right) $.

    Figure  16.  Result of soil behaviour type classification using the Robertson 1986 chart.

    Figure  17.  Result of soil behaviour type classification using: the Robertson 1990 chart (a) and the Robertson 2010 chart (b).

    Figure  18.  Soil behaviour type classification for test points based on $ {I}_{c\left(JD\right)} $.

    Figure  19.  Soil behaviour type classification for test points based on $ {I}_{c\left(RW\right)} $.

    Figure  20.  Soil behaviour type classification for test points based on ${I}_{{\rm{SBT}}}$.

    Figure  21.  Result of soil behaviour type classification using the Eslami classification chart.

    Figure  22.  Result of soil behaviour type classification using the Brouwer classification chart.

    Table  1.   Soil properties of Huanghe River Delta silts

    Soil typeSpecific gravityWater content/%emaxemin$ {\rho }' $/(g·cm−3)Liquid limit/%Plastic limit/%Plasticity index Ip/%
    ML2.7025.41.450.451.2529.621.69.8
    下载: 导出CSV

    Table  2.   Consolidation coefficient (Cv) of Huanghe River Delta silts

    Vertical stress30 kPa50 kPa100 kPa150 kPa
    ${c}_{{\rm{v}}}$/(cm2·s−1)0.0510.0630.0890.106
    下载: 导出CSV

    Table  3.   Friction angle obtained from monotonic shear test

    ${\sigma }'_{ { {\rm{v} } }_{0} }$/kPa${\varphi }{ {'} }$/(°)M
    3032.341.30
    9030.171.21
    10027.961.11
    下载: 导出CSV

    Table  4.   Friction angle (${\varphi '} $) derived from cone penetration test

    Penetration rate20 mm/s10 mm/s1 mm/s0.2 mm/s
    ${\varphi '}$ (Mayne)34.3432.4328.4127.65
    ${\varphi '}$ (Kulhawy)31.6930.297 927.5427.05
    下载: 导出CSV

    Table  5.   Fiction angle corresponding to surface sediment types in the Huanghe River Delta

    Soil types${\varphi }' $/(°)Data source
    Normally consolidated
    silty soil

    26.5–38.3


    Meng et al., 2008; Liu, 2014;
    Lu and Li, 2003; Liu et al., 2006;
    Chang, 2009; Cheng, 2007;
    Liu et al., 2009; Wang et al., (2014
    Sandy silt32.5–38.3Chang, 2009; Jia et al., 2011
    Silty sand38.0–42.6
    下载: 导出CSV

    Table  6.   Soil behaviour type classification

    RegionSoil typeRegionSoil type
    1sensitive fine-grained soil7silty sand-sandy silt
    2organic soil8sand-silty sand
    3clay9sand
    4silty clay-clay10gravel sand-sand
    5clayey silt-silty clay11very stiff fine-grained soil*
    6sandy silt-clayey silt12sand-clayey sand*
    Note: * refers to overconsolidated soil or cemented soil.
    下载: 导出CSV

    Table  7.   Soil behaviour type classification

    RegionSoil typeRegionSoil type
    1
    sensitive fine-grained
    soil
    6
    sand-silty san
    2organic soil, peats7gravelly sand-sand
    3
    clay-silty clay
    8
    very stiff sand-clayey
    sand*
    4clayey silt-silty clay9very stiff, fine grained*
    5silty sand-sandy silt
    Note: * refers to overconsolidated soil or cemented soil.
    下载: 导出CSV
  • Albatal A, Stark N, Castellanos B. 2020. Estimating in situ relative density and friction angle of nearshore sand from portable free-fall penetrometer tests. Canadian Geotechnical Journal, 57(1): 17–31. doi: 10.1139/cgj-2018-0267
    Begemann H K S. 1965. The friction jacket cone as an aid in determining the soil profile. In: Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering. Montreal: Springer, 17−20
    Brandon T L, Rose A T, Duncan J M. 2006. Drained and undrained strength interpretation for low-plasticity silts. Journal of Geotechnical & Geoenvironmental Engineering, 132(2): 250–257
    Brouwer H. 2007. In Situ Soil Testing. East Sussex: Lankelma, 144
    Cai Guojun, Liu Songyu, Puppala A J. 2011. Comparison of CPT charts for soil classification using PCPT data: example from clay deposits in Jiangsu Province, China. Engineering Geology, 121(1−2): 89–96. doi: 10.1016/j.enggeo.2011.04.016
    Chang Fangqiang. 2009. Study on mechanism of wave-induced submarine landslide at the Yellow River Estuary, China (in Chinese)[dissertation]. Qingdao: Ocean University of China
    Cheng Chao. 2007. Research on liquefaction evaluation criteria for silty soil in Yellow River Delta (in Chinese)[dissertation]. Qingdao: Ocean University of China
    Cheng Guodong, Xue Chunting. 1997. Sedimentary Geology of the Yellow River Delta (in Chinese). Beijing: Geological Publishing House
    Douglas B J, Olsen R S. 1981. Soil classification using electric cone penetrometer. In: Proceedings of Conference on Cone Penetration Testing and Experience. St. Louis: ASCE, 209–227
    Eslami A, Fellenius B H. 1997. Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal, 34(6): 886–904. doi: 10.1139/t97-056
    Feng Xiuli, Ye Yincan, Ma Yanxia, et al. 2002. Silt pore pressure response and dynamic strength under dynamic loading. Journal of Ocean University of Qingdao (in Chinese), 32(3): 429–433
    Finke K A, Mayne P W, Klopp R A. 2001. Piezocone penetration testing in Atlantic Piedmont residuum. Journal of Geotechnical and Geoenvironmental Engineering, 127(1): 48–54. doi: 10.1061/(ASCE)1090-0241(2001)127:1(48)
    Geiser F, Laloui L, Vulliet L. 2006. Elasto-plasticity of unsaturated soils: laboratory test results on a remoulded silt. Soils and Foundations, 46(5): 545–556. doi: 10.3208/sandf.46.545
    Holmsgaard R, Ibsen L B, Nielsen B N. 2016. Interpretation of seismic cone penetration testing in silty soil. Electronic Journal of Geotechnical Engineering, 21(15): 4759–4779
    Jefferies M G, Davies M P. 1991. Soil classification by the cone penetration test: Discussion. Canadian Geotechnical Journal, 28(1): 173–176. doi: 10.1139/t91-023
    Jefferies M G, Davies M P. 1993. Use of CPTU to estimate equivalent SPT N60. Geotechnical Testing Journal, 16(4): 458–468. doi: 10.1520/GTJ10286J
    Jia Yonggang, Shan Hongxian, Yang Xiujuan, et al. 2011. Sediment Dynamics and Geologic Hazards in the Estuary of Yellow River, China (in Chinese). Beijing: Science Press
    Jones G A, Rust E. 1982. Piezometer penetration testing CUPT. In: 2nd European Symposium on Penetration Testing. Amsterdam: CRC Press, 607–613
    Kulhawy F H, Mayne P W. 1990. Manual on estimating soil properties for foundation design. Palo Alto, CA: Electric Power Research Institute
    Librić L, Jurić-Kaćunić D, Kovačević M S. 2017. Application of Cone Penetration Test (Cpt) Results for Soil Classification. Građevinar, 69(1): 11–20
    Liu Jie. 2014. Analysis of consolidation settlement and its contribution to topographical change in the Modern Yellow River subaqueous delta (in Chinese)[dissertation]. Qingdao: Ocean University of China
    Liu Xiaoyu, Liu Huixin, Sun Yongfu, et al. 2012. Experimental study of pore water pressure development mode of silt with different clay content under dynamic load. Coastal Engineering (in Chinese), 31(1): 1–7
    Liu Hongjun, Lü Wenfang, Yang Junjie, et al. 2009. Influence of initial dry density and clay content on steady state strength of silty soil in Yellow River Delta. Chinese Journal of Geotechnical Engineering (in Chinese), 31(8): 1287–1291
    Liu Shengfa, Zhuang Zhenye, Lü Haiqing, et al. 2006. The strata and environmental evolution in the late quaternary in the Chengdao area and modern Yellow River Delt Coast. Transactions of Oceanology and Limnology (in Chinese), 2006(4): 32–37
    Long M. 2008. Design parameters from in situ tests in soft ground—recent developments. In: Geotechnical and Geophysical Site Characterization. London: CRC Press, 89–116
    Lu Hongyou, Li Guangxue. 2003. The features of scouring and silting and the prediction of water depth in the Chengdao area of the Yellow River Delta in recent years. Journal of Chang’an University: Earth Science Edition (in Chinese), 25(1): 57–61
    Lunne T, Christoffersen H P. 1983. Interpretation of cone penetrometer data for offshore sands. In: Proceedings of the Annual Offshore Technology Conference. Richardson, Texas: 181–192
    Mayne P W. 2006. The Second James K. Mitchell Lecture Undisturbed sand strength from seismic cone tests. Geomechanics and Geoengineering, 1(4): 239–257. doi: 10.1080/17486020601035657
    Meng Xiangmei, Jia Yonggang, Liu Xiaoli. 2008. Study on zoning and liquefaction induced by wave of Chengdao in Yellow River Delta. Journal of Engineering Geology (in Chinese), 16(S1): 44–53
    Mitchell J K, Lunne T A. 1978. Cone resistance as measure of sand strength. Journal of the Geotechnical Engineering Division, 104(7): 995–1012. doi: 10.1061/AJGEB6.0000676
    Qi Shanzhong, Liu Haili. 2017. Natural and anthropogenic hazards in the Yellow River Delta, China. Natural Hazards, 85(3): 1907–1911. doi: 10.1007/s11069-016-2638-9
    Robertson P K. 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1): 151–158. doi: 10.1139/t90-014
    Robertson P K. 2009. Interpretation of cone penetration tests—a unified approach. Canadian Geotechnical Journal, 46(11): 1337–1355. doi: 10.1139/T09-065
    Robertson P K. 2010. Soil behaviour type from the CPT: an update. In: 2nd International Symposium on Cone Penetration Testing. Huntington Beach: Cone Penetration Testing Organizing Committee, 575–583
    Robertson P K, Campanella R G. 1983. Interpretation of cone penetration tests. Part I: Sand. Canadian Geotechnical Journal, 20(4): 719–733
    Robertson P K, Campanella R G, Gillespie D. 1986. Seismic CPT to measure in situ shear wave velocity. Journal of Geotechnical Engineering, 112(8): 791–803. doi: 10.1061/(ASCE)0733-9410(1986)112:8(791)
    Robertson P K, Wride C E. 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3): 442–459. doi: 10.1139/t98-017
    Senneset K, Janbu N. 1985. Shear strength parameters obtained from static cone penetration tests. In: Strength Testing of Marine sediments: Laboratory and In-Situ Measurement. West Conshohocken, PA: ASTM International, 41–54
    Shahri A A, Malehmir A, Juhlin C. 2015. Soil classification analysis based on piezocone penetration test data—A case study from a quick-clay landslide site in southwestern Sweden. Engineering Geology, 189: 32–47. doi: 10.1016/j.enggeo.2015.01.022
    Schneider J A, Randolph M F, Mayne P W, et al. 2008. Analysis of factors influencing soil classification using normalized piezocone tip resistance and pore pressure parameters. Journal of Geotechnical and Geoenvironmental Engineering, 134(11): 1569–1586. doi: 10.1061/(ASCE)1090-0241(2008)134:11(1569)
    Song Binghui, Sun Yongfu, Song Yupeng, et al. 2020. Post-liquefaction re-compaction effect on the cyclic behavior of natural marine silty soil in the Yellow River Delta. Ocean Engineering, 195: 106753. doi: 10.1016/j.oceaneng.2019.106753
    Suzuki Y. 2015. Investigation and interpretation of cone penetration rate effects [dissertation]. Crawley, WA, Australia: The University of Western Australia
    Tonni L, Gottardi G. 2011. Analysis and interpretation of piezocone data on the silty soils of the Venetian lagoon (Treporti test site). Canadian Geotechnical Journal, 48(4): 616–633. doi: 10.1139/t10-085
    Wang Hu, Liu Hongjun. 2016. Evaluation of storm wave-induced silty seabed instability and geo-hazards: A case study in the Yellow River Delta. Applied Ocean Research, 58: 135–145. doi: 10.1016/j.apor.2016.03.013
    Wang Xiaohua, Liu Hongjun, Jia Yonggang. 2008. The research on the mineral characteristics of sediment and the responce to the hydrodynamic conditions of the tidal flat, at the northern Yellow River Delta. Marine Science (in Chinese), 32(2): 42–46
    Wang Hu, Liu Hongjun, Zhang Minsheng, et al. 2014. Undrained shear strength behavior of ocean silt under low stress conditions and its application to analyzing submarine shallow landslides. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 33(4): 849–856
    Wen Mingzheng, Wang Zhenhao, Zhang Bowen, et al. 2018. Survey on the distribution of fluid mud and disturbed strata on subaqueous Yellow River Delta. Journal of Engineering Geology (in Chinese), 26(S1): 677–683
    Yang Zhongnian, Liu Xuesen, Su Xiuting, et al. 2022. CPT-Based evaluation of sediment characteristics and effective internal friction angle in the Yellow River Estuary. Marine Georesources & Geotechnology, 40(9): 1108–1118
    Yang Zhongnian, Zhu Yongmao, Liu Tao, et al. 2019. Pumping effect of wave-induced pore pressure on the development of fluid mud layer. Ocean Engineering, 189: 106391. doi: 10.1016/j.oceaneng.2019.106391
    Zhang Yan, Feng Xiuli, Deng Shenggui, et al. 2022a. Pore pressure response and dissipation of piezocone test in shallow silty soil of Yellow River Delta. Journal of Marine Science and Engineering, 10(2): 225. doi: 10.3390/jmse10020225
    Zhang Yan, Feng Xiuli, Ding Chenhao, et al. 2022b. Study of cone penetration rate effects in the Yellow River Delta silty soils with different clay contents and state parameters. Ocean Engineering, 250: 110982. doi: 10.1016/j.oceaneng.2022.110982
    Zhang Jiarui, Meng Qingsheng, Zhang Yan, et al. 2022c. Effect of penetration rates on the piezocone penetration test in the Yellow River Delta silt. Journal of Ocean University of China, 21(2): 361–374. doi: 10.1007/s11802-022-4934-1
  • 加载中
图(22) / 表(7)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  52
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 录用日期:  2022-08-15
  • 网络出版日期:  2023-10-19
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回