Forty-year investigation of wave power in energetic region of Persian Gulf in Iranian territorial waters by using short-term and new long-term stability assessment parameters

Fouad Salimi Cyrus Ershadi Vahid Chegini

Fouad Salimi, Cyrus Ershadi, Vahid Chegini. Forty-year investigation of wave power in energetic region of Persian Gulf in Iranian territorial waters by using short-term and new long-term stability assessment parameters[J]. Acta Oceanologica Sinica, 2023, 42(10): 75-83. doi: 10.1007/s13131-022-2110-5
Citation: Fouad Salimi, Cyrus Ershadi, Vahid Chegini. Forty-year investigation of wave power in energetic region of Persian Gulf in Iranian territorial waters by using short-term and new long-term stability assessment parameters[J]. Acta Oceanologica Sinica, 2023, 42(10): 75-83. doi: 10.1007/s13131-022-2110-5

doi: 10.1007/s13131-022-2110-5

Forty-year investigation of wave power in energetic region of Persian Gulf in Iranian territorial waters by using short-term and new long-term stability assessment parameters

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The impact of water level changes on the significant wave height (a) and peak wave period (b).

    Figure  2.  The impact of computational time steps changes on the significant wave height (a) and peak wave period (b).

    Figure  3.  The impact of computational space-grid intervals changes on the significant wave height (a) and peak wave period (b).

    Figure  4.  ${H}_{{\rm{s}}}^{2}{T}_{{\rm{p}}}$ verification diagram in Bushehr. Hs: significant wave height; Tp: peak wave period.

    Figure  5.  ${H}_{{\rm{s}}}^{2}{T}_{{\rm{p}}}$ verification diagram in Kish. Hs: significant wave height; Hs: significant wave height; Tp: peak wave period.

    Figure  6.  Coordinates of the studied points.

    Figure  7.  Comparison of mean energy of 40 a in the studied points.

    Figure  8.  Mean annual wave energy in: Point 1 (a), Point 2 (b), Point 3 (c), Point 4 (d), Point 5 (e), Point 6 (f), and Point 7 (g), from 1979 to 2018.

    Figure  9.  Wave power rose for four different decades, Point 1.

    Figure  10.  Wave power rose for four different decades, Point 4.

    Figure  11.  Wave power rose for four different decades, Point 6.

    Figure  12.  Amount of the Cv parameter for all months in: Point 1 (a), Point 2 (b), Point 3 (c), Point 4 (d), Point 5 (e), Point 6 (f), and Point 7 (g), from 1979 to 2018.

    Table  1.   Statistical parameters of Bushehr buoy error

    BushehrBiasRMSESICC
    Hs0.120.340.360.84
    Tp0.030.790.180.78
    Hs2Tp1.414.740.770.82
    Note: CC: correlation coefficient; RMSE: root mean square error; SI: scatter index. Hs: significant wave height; Tp: peak wave period.
    下载: 导出CSV

    Table  2.   Statistical parameters of Kish buoy error

    KishBiasRMSESICC
    Hs0.10.230.360.9
    Tp0.240.550.160.84
    Hs2Tp0.432.280.840.87
    Note: CC: correlation coefficient; RMSE: root mean square error; SI: scatter index. Hs: significant wave height; Tp: the peak wave period.
    下载: 导出CSV

    Table  3.   Mean energy in 4 decades at the study points

    Point 1Point 2Point 3Point 4Point 5Point 6Point 7
    Total average
    power/(kW·m−1)
    2.012.432.002.012.282.522.50
    下载: 导出CSV

    Table  4.   The amount of average annual power (MVI) and short term power (SVI) parameters in all studied points

    Point numberMVISVI
    Point 11.5851.209
    Point 21.8001.164
    Point 31.5561.027
    Point 41.4811.082
    Point 51.7561.218
    Point 61.7931.100
    Point 71.2151.045
    下载: 导出CSV

    Table  5.   The decadal variability index (DVI) parameter in all studied points

    Point NumberDVI
    Point 10.429
    Point 20.466
    Point 30.353
    Point 40.194
    Point 50.468
    Point 60.383
    Point 70.237
    下载: 导出CSV
  • Abbaspour M, Rahimi R. 2011. Iran atlas of offshore renewable energies. Renewable Energy, 36(1): 388–398. doi: 10.1016/j.renene.2010.06.051
    Akpınar A, Kömürcü M İ. 2013. Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Applied Energy, 101: 502–512. doi: 10.1016/j.apenergy.2012.06.005
    Amiruddin, Ribal A, Khaeruddin, et al. 2019. A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations. Acta Oceanologica Sinica, 38(8): 86–93. doi: 10.1007/s13131-019-1400-z
    Hadadpour S, Etemad-Shahidi A, Jabbari E, et al. 2014. Wave energy and hot spots in Anzali Port. Energy, 74: 529–536. doi: 10.1016/j.energy.2014.07.018
    Hughes M G, Heap A D. 2010. National-scale wave energy resource assessment for Australia. Renewable Energy, 35(8): 1783–1791. doi: 10.1016/j.renene.2009.11.001
    Kamranzad B, Chegini V, Etemad-Shahidi A. 2016a. Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves. Renewable Energy, 94: 341–352. doi: 10.1016/j.renene.2016.03.084
    Kamranzad B, Etemad-shahidi A, Chegini V. 2013. Assessment of wave energy variation in the Persian Gulf. Ocean Engineering, 70: 72–80. doi: 10.1016/j.oceaneng.2013.05.027
    Kamranzad B, Etemad-Shahidi A, Chegini V. 2016b. Sustainability of wave energy resources in southern Caspian Sea. Energy, 97: 549–559. doi: 10.1016/j.energy.2015.11.063
    Kutupoğlu V, Çakmak R E, Akpınar A, et al. 2018. Setup and evaluation of a SWAN wind wave model for the Sea of Marmara. Ocean Engineering, 165: 450–464. doi: 10.1016/j.oceaneng.2018.07.053
    Lambeck K. 1996. Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth and Planetary Science Letters, 142(1–2): 43–57
    Langodan S, Viswanadhapalli Y, Dasari H P, et al. 2016. A high-resolution assessment of wind and wave energy potentials in the Red Sea. Applied Energy, 181: 244–255. doi: 10.1016/j.apenergy.2016.08.076
    Mahmoodi K, Ghassemi H, Razminia A. 2019. Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset. Energy, 187: 115991. doi: 10.1016/j.energy.2019.115991
    Mirzaei A, Tangang F, Juneng L. 2015. Wave energy potential assessment in the central and southern regions of the South China Sea. Renewable Energy, 80: 454–470. doi: 10.1016/j.renene.2015.02.005
    Morim J, Cartwright N, Etemad-Shahidi A, et al. 2014. A review of wave energy estimates for nearshore shelf waters off Australia. International Journal of Marine Energy, 7: 57–70. doi: 10.1016/j.ijome.2014.09.002
    Neill S P, Hashemi M R. 2013. Wave power variability over the northwest European shelf seas. Applied Energy, 106: 31–46. doi: 10.1016/j.apenergy.2013.01.026
    Neill S P, Lewis M J, Hashemi M R, et al. 2014. Inter-annual and inter-seasonal variability of the Orkney wave power resource. Applied Energy, 132: 339–348. doi: 10.1016/j.apenergy.2014.07.023
    Ortega S, Osorio A F, Agudelo P. 2013. Estimation of the wave power resource in the Caribbean Sea in areas with scarce instrumentation. Case study: Isla Fuerte, Colombia. Renewable Energy, 57: 240–248. doi: 10.1016/j.renene.2012.11.038
    Rusu E, Onea F. 2013. Evaluation of the wind and wave energy along the Caspian Sea. Energy, 50: 1–14. doi: 10.1016/j.energy.2012.11.044
    Rute Bento A, Martinho P, Guedes Soares C. 2015. Numerical modelling of the wave energy in Galway Bay. Renewable Energy, 78: 457–466. doi: 10.1016/j.renene.2015.01.024
    Rute Bento A, Martinho P, Guedes Soares C. 2018. Wave energy assessement for northern Spain from a 33-year hindcast. Renewable Energy, 127: 322–333. doi: 10.1016/j.renene.2018.04.049
    Saket A, Etemad-Shahidi A. 2012. Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renewable Energy, 40(1): 90–97. doi: 10.1016/j.renene.2011.09.024
    Soleimani K, Ketabdari M J, Khorasani F. 2015. Feasibility study on tidal and wave energy conversion in Iranian seas. Sustainable Energy Technologies and Assessments, 11: 77–86. doi: 10.1016/j.seta.2015.03.006
    Wan Yong, Zhang Jie, Meng Junmin, et al. 2015. Exploitable wave energy assessment based on ERA-interim reanalysis data—a case study in the East China Sea and the South China Sea. Acta Oceanologica Sinica, 34(9): 143–155. doi: 10.1007/s13131-015-0641-8
    Wang Zhifeng, Dong Sheng, Dong Xiangke, et al. 2016. Assessment of wind energy and wave energy resources in Weifang Sea area. International Journal of Hydrogen Energy, 41(35): 15805–15811. doi: 10.1016/j.ijhydene.2016.04.002
    Wu Shuping, Liu Chuanyu, Chen Xinping. 2015. Offshore wave energy resource assessment in the East China Sea. Renewable Energy, 76: 628–636. doi: 10.1016/j.renene.2014.11.054
    Zheng Chongwei. 2021. Global oceanic wave energy resource dataset—with the Maritime Silk Road as a case study. Renewable Energy, 169: 843–854. doi: 10.1016/j.renene.2021.01.058
    Zheng Chongwei, Li Chongyin. 2015. Variation of the wave energy and significant wave height in the China sea and adjacent waters. Renewable and Sustainable Energy Reviews, 43: 381–387. doi: 10.1016/j.rser.2014.11.001
    Zheng Chongwei, Pan Jing, Li Jiaxun. 2013. Assessing the China sea wind energy and wave energy resources from 1988 to 2009. Ocean Engineering, 65: 39–48. doi: 10.1016/j.oceaneng.2013.03.006
    Zheng Chongwei, Shao Longtan, Shi Wenli, et al. 2014. An assessment of global ocean wave energy resources over the last 45 a. Acta Oceanologica Sinica, 33(1): 92–101
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  109
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-20
  • 录用日期:  2022-08-11
  • 网络出版日期:  2023-03-10
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回