Rapid environmental assessment in the South China Sea: Improved inversion of sound speed profile using remote sensing data

Ke Qu Binbin Zou Jianbo Zhou

Ke Qu, Binbin Zou, Jianbo Zhou. Rapid environmental assessment in the South China Sea: Improved inversion of sound speed profile using remote sensing data[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-022-2032-2
Citation: Ke Qu, Binbin Zou, Jianbo Zhou. Rapid environmental assessment in the South China Sea: Improved inversion of sound speed profile using remote sensing data[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-022-2032-2

doi: 10.1007/s13131-022-2032-2

Rapid environmental assessment in the South China Sea: Improved inversion of sound speed profile using remote sensing data

Funds: The Natural Science Foundation of Guangdong Province under contract No. 2022A1515011519; the National Natural Science Foundation of China under contract No. 11904290.
More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • Figure  1.  Sound speed profile samples and background profile.

    Figure  2.  Distribution of clustered samples when five-order empirical orthogonal function coefficients were clustered into four classes. The class centers are marked by asterisks.

    Figure  3.  First five orders of the empirical orthogonal function. From left to right are, in order, the first to the fifth order.

    Figure  4.  Schematics of the training of the map (blue arrows) and reconstruction of the sound speed profile (red arrows) using self-organizing map-based inversion.

    Figure  5.  Errors of reconstruction for different sample numbers.

    Figure  6.  Reconstruction errors at different depths.

    Figure  7.  An example of sound speed profile reconstruction. The sample used had the largest error in self-organizing map (SOM) reconstruction.

    Figure  8.  Results of inversion of the normalized projection coefficients of the first five orders. The straight line indicates perfect inversion. From left to right are, in order, the first to the fifth order.

    Table  1.   Properties of reconstruction of different orders of the empirical orthogonal function (EOF)

    EOF1EOF2EOF3EOF4EOF5
    Variance contribution/%74.013.74.72.91.4
    Cumulative variance contribution/%74.087.792.495.396.7
    Reconstruction error/(m·s−1)2.001.381.090.850.72
    下载: 导出CSV
  • [1] Bao Senliang, Zhang Ren, Wang Huizan, et al. 2019. Salinity profile estimation in the Pacific Ocean from satellite surface salinity observations. Journal of Atmospheric and Oceanic Technology, 36(1): 53–68. doi: 10.1175/JTECH-D-17-0226.1
    [2] Bianco M J, Gerstoft P. 2017. Dictionary learning of sound speed profiles. The Journal of the Acoustical Society of America, 141(3): 1749–1758. doi: 10.1121/1.4977926
    [3] Carnes M R, Mitchell J L, de Witt P W. 1990. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles. Journal of Geophysical Research Oceans, 95(C10): 17979–17992. doi: 10.1029/JC095iC10p17979
    [4] Carnes M R, Teague W J, Mitchell J L. 1994. Inference of subsurface thermohaline structure from fields measurable by satellite. Journal of Atmospheric and Oceanic Technology, 11(2): 551–566. doi: 10.1175/1520-0426(1994)011<0551:IOSTSF>2.0.CO;2
    [5] Chapman C, Charantonis A A. 2017. Reconstruction of subsurface velocities from satellite observations using iterative self-organizing maps. IEEE Geoscience and Remote Sensing Letters, 14(5): 617–620. doi: 10.1109/LGRS.2017.2665603
    [6] Charantonis A A, Testor P, Mortier l, et al. 2015. Completion of a sparse GLIDER database using multi-iterative Self-Organizing Maps (ITCOMP SOM). Procedia Computer Science, 51: 2198–2206. doi: 10.1016/j.procs.2015.05.496
    [7] Chen Cheng, Ma Yuanliang, Liu Ying. 2018. Reconstructing sound speed profiles worldwide with sea surface data. Applied Ocean Research, 77: 26–33. doi: 10.1016/j.apor.2018.05.002
    [8] Del Grosso V A. 1974. New equation for the speed of sound in natural waters (with comparisons to other equations). The Journal of the Acoustical Society of America, 56(4): 1084–1091. doi: 10.1121/1.1903388
    [9] Fox D N, Teague W J, Barron C N, et al. 2002. The modular ocean data assimilation system (MODAS). Journal of Atmospheric and Oceanic Technology, 19(2): 240–252. doi: 10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
    [10] Frederick C, Villar S, Michalopoulou Z H. 2020. Seabed classification using physics-based modeling and machine learning. The Journal of the Acoustical Society of America, 148(2): 859–872. doi: 10.1121/10.0001728
    [11] Hjelmervik K T, Hjelmervik K. 2013. Estimating temperature and salinity profiles using empirical orthogonal functions and clustering on historical measurements. Ocean Dynamics, 63(7): 809–821. doi: 10.1007/s10236-013-0623-3
    [12] Hjelmervik K, Hjelmervik K T. 2014. Time-calibrated estimates of oceanographic profiles using empirical orthogonal functions and clustering. Ocean Dynamics, 64(5): 655–665. doi: 10.1007/s10236-014-0704-y
    [13] Jain S, Ali M M. 2006. Estimation of sound speed profiles using artificial neural networks. IEEE Geoscience and Remote Sensing Letters, 3(4): 467–470. doi: 10.1109/LGRS.2006.876221
    [14] LeBlanc L R, Middleton F H. 1980. An underwater acoustic sound velocity data model. The Journal of the Acoustical Society of America, 67(6): 2055–2062. doi: 10.1121/1.384448
    [15] Li Z Q, Liu Zenghong, Lu L S. 2020. Global Argo data fast receiving and post-quality-control system. IOP Conference Series: Earth and Environmental Science, 502: 012012. doi: 10.1088/1755-1315/502/1/012012
    [16] Meijers A J S, Bindoff N L, Rintoul S R. 2011. Estimating the four-dimensional structure of the Southern Ocean using satellite altimetry. Journal of Atmospheric and Oceanic Technology, 28(4): 548–568. doi: 10.1175/2010JTECHO790.1
    [17] Rahaman H, Behringer B W, Penny S G, et al. 2016. Impact of an upgraded model in the NCEP Global Ocean Data Assimilation System: The tropical Indian Ocean. Journal of Geophysical Research Oceans, 121(11): 8039–8062. doi: 10.1002/2016JC012056
    [18] Su Hua, Yang Xin, Lu Wenfang, et al. 2019. Estimating subsurface thermohaline structure of the global ocean using surface remote sensing observations. Remote Sensing, 11(13): 1598. doi: 10.3390/rs11131598
  • 加载中
计量
  • 文章访问数:  27
  • HTML全文浏览量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-12
  • 录用日期:  2022-04-21
  • 网络出版日期:  2022-05-13

目录

    /

    返回文章
    返回