Effect of seasonal barrier layer on mixed-layer heat budget in the Bay of Bengal

Gayan Pathirana Dongxiao Wang Gengxin Chen M. K. Abeyratne Tilak Priyadarshana

Gayan Pathirana, Dongxiao Wang, Gengxin Chen, M. K. Abeyratne, Tilak Priyadarshana. Effect of seasonal barrier layer on mixed-layer heat budget in the Bay of Bengal[J]. Acta Oceanologica Sinica, 2022, 41(9): 38-49. doi: 10.1007/s13131-021-1966-0
Citation: Gayan Pathirana, Dongxiao Wang, Gengxin Chen, M. K. Abeyratne, Tilak Priyadarshana. Effect of seasonal barrier layer on mixed-layer heat budget in the Bay of Bengal[J]. Acta Oceanologica Sinica, 2022, 41(9): 38-49. doi: 10.1007/s13131-021-1966-0

doi: 10.1007/s13131-021-1966-0

Effect of seasonal barrier layer on mixed-layer heat budget in the Bay of Bengal

Funds: The Strategic Priority Research Program of Chinese Academy of Sciences under contract No. XDA 20060502; the National Natural Science Foundation of China under contract Nos 41976016, 42076021 and 41521005; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory under contract No. GML2019ZD0306; the Guangdong Basic and Applied Basic Research Foundation under contract No. 2021A1515011534; the Grant for Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences under contract No. ISEE2021ZD01; the Grant for State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology under contract No. LTOZZ2002.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Seasonal climatology of mixed-layer depth (contours, m) (de Boyer Montegut et al., 2004) and sea surface temperature (SST) (colored shading) (Huang et al., 2017) in the Bay of Bengal (BoB) (a); seasonal climatology of barrier-layer thickness (contours, m) and top of thermocline depth (TTD) (colored shading) in the BoB (de Boyer Montegut et al., 2004) (b).

    Figure  2.  Location of the selected RAMA moorings in the Bay of Bengal (a) and the number of Argo profiles at 15°N, 90°E (area marked with red box) (b), 12°N, 90°E (area marked with blue box) (c) used in the present study.

    Figure  3.  Comparison of estimated mixed-layer depth (MLD) (a, b) and the barrier-layer thickness (BLT) (c, d) using observations at the RAMA moorings, Argo, HYCOM, and monthly climatology at 15°N, 90°E (a, c) and 12°N, 90°E (b, d). The numbers represent the correlation (r) values between the RAMA estimations with Argo (red), HYCOM (blue), and climatology (green). The standard deviations of the RAMA observations are: ±6.5 (a), ±8.6 (b), ±16 (c), and ±7.4 (d).

    Figure  4.  Comparison of estimated seasonal cycle of mixed-layer temperature (MLT) (a, b) and mixed-layer salinity (MLS) (c, d) using observations at the RAMA moorings, Argo, HYCOM, and OISST at 15°N, 90°E (a, c) and 12°N, 90°E (b, d). The standard deviations of the RAMA observations are: ±0.9 (a), ±0.7 (b), ±0.2 (c), and ±0.3 (d).

    Figure  5.  Seasonal cycles of turbulent and radiative heat fluxes (a, b) and mixed-layer heat budget terms (c, d) at 15°N, 90°E (a, c) and 12°N, 90°E (b, d) in the Bay of Bengal. The specific terms and their color notations are given in the legend. The standard deviations of the estimated heat budget terms are: $\partial T/ \partial t = \pm 0.02,{Q}^{{'}} = \pm 0.06,\mathrm{H}\mathrm{A}\mathrm{d}\mathrm{v} = \pm 0.006,\;\mathrm{a}\mathrm{n}\mathrm{d}\;{Q}_{h} = \pm 0.04$ (c), and $\partial T/ \partial t = \pm 0.02,{Q}^{{'}} = \pm 0.03, $$ \mathrm{H}\mathrm{A}\mathrm{d}\mathrm{v} = \pm 0.007,\;\mathrm{a}\mathrm{n}\mathrm{d}\;{Q}_{h} = \pm 0.02$ (d).

    Figure  6.  Seasonal variability of barrier-layer thickness (BLT) and mixed-layer temperature (MLT) (a), mixed-layer $ \mathrm{H}\mathrm{A}\mathrm{d}\mathrm{v} $ (b), and $ {Q}_{h} $ (c) at 15°N, 90°E (solid lines) and 12°N, 90°E (dashed lines) in the Bay of Bengal. Shaded area represents the ±1σ.

    Figure  7.  Seasonal variability of barrier-layer thickness (BLT) and entrainment (a, c), and the seasonal variability of BLT and temperature inversion at 15°N, 90°E (a, b) and 12°N, 90°E (c, d) in the BoB. In the upper panels, the red lines represent entrainment estimated considering ${W}_{h} = \mathrm{T}\mathrm{T}\mathrm{D}$ (solid line) and ${W}_{h} = \mathrm{D}23$ (dashed line). In the upper (lower) panels, the dahsed lines (black) represent the zero lines for entrainment (temperature inversion). The standard deviation of the estimated parameters are: ±0.02 (red solid) and ±0.01 (red dashed) (a), ±0.23 (green) (b), ±0.01 (red solid) and ±0.008 (red dahsed) (c), and ±0.14 (green) (d).

    Figure  8.  Seasonal variability of $ {Q}_{h} $ and entrainment, ${W}_{h} = \mathrm{T}\mathrm{T}\mathrm{D}$ and ${W}_{h} = \mathrm{D}23$ at RAMA stations. Figures represent the average data for 8 years (2010–2017) that have been filtered using a 15-day running mean filter.

    Table  1.   Correlations at the 95% significance level between the estimations from RAMA data and other data sources

    ParameterData source15°N, 90°E12°N, 90°E
    rRMSErRMSE
    MLDRAMA-Argo0.86 [0.58, 0.96]3.700.82 [0.48, 0.94]8.00
    RAMA-HYCOM0.42 [0.36, 0.52]7.200.90 [0.67, 0.97]4.00
    RAMA-Climatology0.77 [0.35, 0.93]11.750.80 [0.42, 0.94]11.80
    BLTRAMA-Argo0.95 [0.85, 0.98]5.600.77 [0.36, 0.93]4.90
    RAMA-HYCOM0.85 [0.55, 0.95]12.500.95 [0.82, 0.98]5.00
    RAMA-Climatology0.96 [0.86, 0.98]5.700.88 [0.63, 0.97]7.40
    MLTRAMA-Argo0.98 [0.95, 0.99]0.190.88 [0.62, 0.97]0.70
    RAMA-HYCOM0.98 [0.93, 0.99]0.510.92 [0.73, 0.98]0.62
    RAMA-OISST0.98 [0.97, 0.99]0.180.97 [0.96, 0.98]0.20
    MLSRAMA-Argo0.81 [0.45, 0.94]0.230.89 [0.65, 0.97]0.32
    RAMA-HYCOM0.62 [0.08, 0.88]0.300.91 [0.71, 0.97]0.20
    Note: The confidence intervals are noted in square brackets. MLD: mixed-layer depth; BLT: barrier-layer thickness; MLT: mixed-layer temperature; MLS: mixed-layer salinity.
    下载: 导出CSV

    Table  2.   Correlations at the 95% significance level between the estimated barrier-layer thickness (BLT) and several selected parameters at the RAMA moorings

    15°N, 90°E12°N, 90°E
    BLT-MLT−0.86 [−0.88, −0.83]−0.96 [−0.97, −0.95]
    BLT-HAdv−0.54 [−0.61, −0.47]−0.11 [−0.21, −0.01]
    BLT-Qh0.72 [0.67, 0.77]0.78 [0.74, 0.82]
    BLT-(Wh=TTD)0.98 [0.97, 0.99]0.88 [0.85, 0.90]
    BLT-(Wh=D23)0.97 [0.96, 0.98]0.79 [0.74, 0.83]
    BLT-(–ΔT)0.94 [0.93, 0.95]0.94 [0.92, 0.96]
    Note: The confidence intervals are noted in square brackets. MLT: mixed-layer temperature; TTD: top of thermocline depth.
    下载: 导出CSV
  • [1] Agarwal N, Sharma R, Parekh A, et al. 2012. Argo observations of barrier layer in the tropical Indian Ocean. Advances in Space Research, 50(5): 642–654. doi: 10.1016/j.asr.2012.05.021
    [2] Bosc C, Delcroix T, Maes C. 2009. Barrier layer variability in the western Pacific warm pool from 2000 to 2007. Journal of Geophysical Research, 114(C6): C06023. doi: 10.1029/2008JC005187
    [3] Chen Gengxin, Han Weiqing, Li Yuanlong, et al. 2015. Seasonal-to-Interannual time-scale dynamics of the equatorial undercurrent in the Indian Ocean. Journal of Physical Oceanography, 45(6): 1532–1553. doi: 10.1175/jpo-d-14-0225.1
    [4] Chowdary J S, Srinivas G, Fousiya T S, et al. 2016. Representation of bay of bengal upper-ocean salinity in general circulation models. Oceanography, 29(2): 38–49. doi: 10.5670/oceanog.2016.37
    [5] Cronin M F, McPhaden M J. 2002. Barrier layer formation during westerly wind bursts. Journal of Geophysical Research, 107(C12): 8020. doi: 10.1029/2001JC001171
    [6] de Boyer Montegut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109(C12): C12003. doi: 10.1029/2004JC002378
    [7] de Boyer Montegut C, Vialard J, Shenoi S S C, et al. 2007. Simulated seasonal and interannual variability of the mixed layer heat budget in the northern Indian Ocean. Journal of Climate, 20(13): 3249–3268. doi: 10.1175/JCLI4148.1
    [8] Fairall C W, Bradley E F, Hare J E, et al. 2003. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. Journal of Climate, 16(4): 571–591. doi: 10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
    [9] Felton C S, Subrahmanyam B, Murty V S N, et al. 2014. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity. Journal of Geophysical Research, 119(7): 4200–4213. doi: 10.1002/2013JC009759
    [10] Foltz G R, McPhaden M J. 2009. Impact of barrier layer thickness on SST in the central tropical North Atlantic. Journal of Climate, 22(2): 285–299. doi: 10.1175/2008JCLI2308.1
    [11] Girishkumar M S, Ravichandran M, McPhaden M J. 2013. Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006–2007 and 2007–2008 in the Bay of Bengal. Journal of Geophysical Research, 118(5): 2426–2437. doi: 10.1002/jgrc.20192
    [12] Girishkumar M S, Ravichandran M, McPhaden M J, et al. 2011. Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal. Journal of Geophysical Research, 116(C3): C03009. doi: 10.1029/2010JC006657
    [13] Harenduprakash L, Mitra A K. 1988. Vertical turbulent mass flux below the sea surface and air-sea interaction—monsoon region of the Indian Ocean. Deep-Sea Research Part A. Oceanographic Research Papers, 35(3): 333–346. doi: 10.1016/0198-0149(88)90014-3
    [14] Huang Boyin, Thorne P W, Banzon V F, et al. 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. Journal of Climate, 30(20): 8179–8205. doi: 10.1175/JCLI-D-16-0836.1
    [15] Jinadasa S U P, Pathirana G, Ranasinghe P N, et al. 2020. Monsoonal impact on circulation pathways in the Indian Ocean. Acta Oceanologica Sinica, 39(3): 103–112. doi: 10.1007/s13131-020-1557-5
    [16] Jouanno J, Marin F, du Penhoat Y, et al. 2011. Seasonal heat balance in the upper 100 m of the equatorial Atlantic Ocean. Journal of Geophysical Research, 116(C9): C09003. doi: 10.1029/2010JC006912
    [17] Kumar B P, Vialard J, Lengaigne M, et al. 2012. TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Climate Dynamics, 38(7): 1521–1543. doi: 10.1007/s00382-011-1115-0
    [18] Lukas R, Lindstrom E. 1991. The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research, 96(S01): 3343–3357. doi: 10.1029/90JC01951
    [19] Masumoto Y, Sasaki H, Kagimoto T, et al. 2004. A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). Journal of the Earth Simulator, 1: 35–56
    [20] McCreary J P Jr, Kundu P K, Molinari R L. 1993. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Progress in Oceanography, 31(3): 181–244. doi: 10.1016/0079-6611(93)90002-U
    [21] McPhaden M J, Foltz G R. 2013. Intraseasonal variations in the surface layer heat balance of the central equatorial Indian Ocean: the importance of zonal advection and vertical mixing. Geophysical Research Letters, 40(11): 2737–2741. doi: 10.1002/grl.50536
    [22] McPhaden M J, Meyers G, Ando K, et al. 2009. RAMA: the research moored array for African-Asian-Australian monsoon analysis and prediction. Bulletin of the American Meteorological Society, 90(4): 459–480. doi: 10.1175/2008BAMS2608.1
    [23] Narvekar J, Kumar S P. 2006. Seasonal variability of the mixed layer in the central Bay of Bengal and associated changes in nutrients and chlorophyll. Deep-Sea Research Part I: Oceanographic Research Papers, 53(5): 820–835. doi: 10.1016/j.dsr.2006.01.012
    [24] Pathirana G, Priyadarshani K. 2020. A mini-warm pool during spring in the Bay of Bengal. Journal of the National Science Foundation of Sri Lanka, 48(4): 345–355. doi: 10.4038/jnsfsr.v48i4.9256
    [25] Pathirana G, Priyadarshani K, Wang Dongxiao, et al. 2020. Effect of spring mini-warm pool on the tropical cyclones in the Bay of Bengal: case studies. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 12(4): 460–471
    [26] Rao R R, Sivakumar R. 2000. Seasonal variability of near-surface thermal structure and heat budget of the mixed layer of the tropical Indian Ocean from a new global ocean temperature climatology. Journal of Geophysical Research, 105(C1): 995–1015. doi: 10.1029/1999JC900220
    [27] Schott F A, McCreary J P Jr. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51(1): 1–123. doi: 10.1016/S0079-6611(01)00083-0
    [28] Shee A, Sil S, Gangopadhyay A, et al. 2019. Seasonal evolution of oceanic upper layer processes in the northern Bay of Bengal following a single Argo float. Geophysical Research Letters, 46(10): 5369–5377. doi: 10.1029/2019GL082078
    [29] Shenoi S S C, Shankar D, Shetye S R. 2002. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. Journal of Geophysical Research, 107(C6): 3052. doi: 10.1029/2000JC000679
    [30] Shetye S R, Gouveia A D, Shankar D, et al. 1996. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. Journal of Geophysical Research, 101(C6): 14011–14025. doi: 10.1029/95JC03307
    [31] Sprintall J, Tomczak M. 1992. Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research, 97(C5): 7305–7316. doi: 10.1029/92JC00407
    [32] Thadathil P, Muraleedharan P M, Rao R R, et al. 2007. Observed seasonal variability of barrier layer in the Bay of Bengal. Journal of Geophysical Research, 112(C2): C02009. doi: 10.1029/2006JC003651
    [33] Thadathil P, Thoppil P, Rao R R, et al. 2008. Seasonal variability of the observed barrier layer in the Arabian Sea. Journal of Physical Oceanography, 38(3): 624–638. doi: 10.1175/2007JPO3798.1
    [34] Vialard J, Delecluse P. 1998a. An OGCM study for the TOGA decade. Part I: role of salinity in the physics of the Western Pacific fresh pool. Journal of Physical Oceanography, 28(6): 1071–1088. doi: 10.1175/1520-0485(1998)028<1071:AOSFTT>2.0.CO;2
    [35] Vialard J, Delecluse P. 1998b. An OGCM study for the TOGA decade. Part II: barrier-layer formation and variability. Journal of Physical Oceanography, 28(6): 1089–1106. doi: 10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2
    [36] Vialard J, Foltz G R, McPhaden M J, et al. 2008. Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian Oscillation in late 2007 and early 2008. Geophysical Research Letters, 35(19): L19608. doi: 10.1029/2008GL035238
    [37] Vinayachandran P N, Murty V S N, Babu V R. 2002. Observations of barrier layer formation in the Bay of Bengal during summer monsoon. Journal of Geophysical Research, 107(C12): 8018. doi: 10.1029/2001JC000831
    [38] Warner S J, Becherer J, Pujiana K, et al. 2016. Monsoon mixing cycles in the Bay of Bengal: a year-long subsurface mixing record. Oceanography, 29(2): 158–169. doi: 10.5670/oceanog.2016.48
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1170
  • HTML全文浏览量:  430
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-01
  • 录用日期:  2021-09-22
  • 网络出版日期:  2022-04-18
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回