-
Abstract: Time series measurements (2010–2017) from the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA) moorings at 15°N, 90°E and 12°N, 90°E are used to investigate the effect of the seasonal barrier layer (BL) on the mixed-layer heat budget in the Bay of Bengal (BoB). The mixed-layer temperature tendency (∂T/∂t) is primarily controlled by the net surface heat flux that remains in the mixed layer (
${Q}^{{'}}$ ) from March to October, while both${Q}^{{'}}$ and the vertical heat flux at the base of the mixed layer ($ {Q}_{h} $ ), estimated as the residual of the mixed-layer heat budget, dominate during winter (November–February). An inverse relation is observed between the BL thickness and the mixed-layer temperature ($ \mathrm{M}\mathrm{L}\mathrm{T} $ ). Based on the estimations at the moorings, it is suggested that when the BL thickness is ≥25 m, it exerts a considerable influence on ∂T/∂t through the modulation of$ {Q}_{h} $ (warming) in the BoB. The cooling associated with$ {Q}_{h} $ is strongest when the BL thickness is ≤10 m with the$ \mathrm{M}\mathrm{L}\mathrm{T} $ exceeding 29°C, while the contribution from$ {Q}_{h} $ remains nearly zero when the BL thickness varies between 10 m and 25 m. Temperature inversion is evident in the BoB during winter when the BL thickness remains ≥25 m with an average MLT<28.5°C. Furthermore,$ {Q}_{h} $ follows the seasonal cycle of the BL at these RAMA mooring locations, with r>0.72 at the 95% significance level.-
Key words:
- barrier layer /
- vertical heat flux /
- temperature inversion /
- Bay of Bengal
-
Figure 1. Seasonal climatology of mixed-layer depth (contours, m) (de Boyer Montegut et al., 2004) and sea surface temperature (SST) (colored shading) (Huang et al., 2017) in the Bay of Bengal (BoB) (a); seasonal climatology of barrier-layer thickness (contours, m) and top of thermocline depth (TTD) (colored shading) in the BoB (de Boyer Montegut et al., 2004) (b).
Figure 3. Comparison of estimated mixed-layer depth (MLD) (a, b) and the barrier-layer thickness (BLT) (c, d) using observations at the RAMA moorings, Argo, HYCOM, and monthly climatology at 15°N, 90°E (a, c) and 12°N, 90°E (b, d). The numbers represent the correlation (r) values between the RAMA estimations with Argo (red), HYCOM (blue), and climatology (green). The standard deviations of the RAMA observations are: ±6.5 (a), ±8.6 (b), ±16 (c), and ±7.4 (d).
Figure 4. Comparison of estimated seasonal cycle of mixed-layer temperature (MLT) (a, b) and mixed-layer salinity (MLS) (c, d) using observations at the RAMA moorings, Argo, HYCOM, and OISST at 15°N, 90°E (a, c) and 12°N, 90°E (b, d). The standard deviations of the RAMA observations are: ±0.9 (a), ±0.7 (b), ±0.2 (c), and ±0.3 (d).
Figure 5. Seasonal cycles of turbulent and radiative heat fluxes (a, b) and mixed-layer heat budget terms (c, d) at 15°N, 90°E (a, c) and 12°N, 90°E (b, d) in the Bay of Bengal. The specific terms and their color notations are given in the legend. The standard deviations of the estimated heat budget terms are:
$\partial T/ \partial t = \pm 0.02,{Q}^{{'}} = \pm 0.06,\mathrm{H}\mathrm{A}\mathrm{d}\mathrm{v} = \pm 0.006,\;\mathrm{a}\mathrm{n}\mathrm{d}\;{Q}_{h} = \pm 0.04$ (c), and$\partial T/ \partial t = \pm 0.02,{Q}^{{'}} = \pm 0.03, $ $ \mathrm{H}\mathrm{A}\mathrm{d}\mathrm{v} = \pm 0.007,\;\mathrm{a}\mathrm{n}\mathrm{d}\;{Q}_{h} = \pm 0.02$ (d).Figure 7. Seasonal variability of barrier-layer thickness (BLT) and entrainment (a, c), and the seasonal variability of BLT and temperature inversion at 15°N, 90°E (a, b) and 12°N, 90°E (c, d) in the BoB. In the upper panels, the red lines represent entrainment estimated considering
${W}_{h} = \mathrm{T}\mathrm{T}\mathrm{D}$ (solid line) and${W}_{h} = \mathrm{D}23$ (dashed line). In the upper (lower) panels, the dahsed lines (black) represent the zero lines for entrainment (temperature inversion). The standard deviation of the estimated parameters are: ±0.02 (red solid) and ±0.01 (red dashed) (a), ±0.23 (green) (b), ±0.01 (red solid) and ±0.008 (red dahsed) (c), and ±0.14 (green) (d).Table 1. Correlations at the 95% significance level between the estimations from RAMA data and other data sources
Parameter Data source 15°N, 90°E 12°N, 90°E r RMSE r RMSE MLD RAMA-Argo 0.86 [0.58, 0.96] 3.70 0.82 [0.48, 0.94] 8.00 RAMA-HYCOM 0.42 [0.36, 0.52] 7.20 0.90 [0.67, 0.97] 4.00 RAMA-Climatology 0.77 [0.35, 0.93] 11.75 0.80 [0.42, 0.94] 11.80 BLT RAMA-Argo 0.95 [0.85, 0.98] 5.60 0.77 [0.36, 0.93] 4.90 RAMA-HYCOM 0.85 [0.55, 0.95] 12.50 0.95 [0.82, 0.98] 5.00 RAMA-Climatology 0.96 [0.86, 0.98] 5.70 0.88 [0.63, 0.97] 7.40 MLT RAMA-Argo 0.98 [0.95, 0.99] 0.19 0.88 [0.62, 0.97] 0.70 RAMA-HYCOM 0.98 [0.93, 0.99] 0.51 0.92 [0.73, 0.98] 0.62 RAMA-OISST 0.98 [0.97, 0.99] 0.18 0.97 [0.96, 0.98] 0.20 MLS RAMA-Argo 0.81 [0.45, 0.94] 0.23 0.89 [0.65, 0.97] 0.32 RAMA-HYCOM 0.62 [0.08, 0.88] 0.30 0.91 [0.71, 0.97] 0.20 Note: The confidence intervals are noted in square brackets. MLD: mixed-layer depth; BLT: barrier-layer thickness; MLT: mixed-layer temperature; MLS: mixed-layer salinity. Table 2. Correlations at the 95% significance level between the estimated barrier-layer thickness (BLT) and several selected parameters at the RAMA moorings
15°N, 90°E 12°N, 90°E BLT-MLT −0.86 [−0.88, −0.83] −0.96 [−0.97, −0.95] BLT-HAdv −0.54 [−0.61, −0.47] −0.11 [−0.21, −0.01] BLT-Qh 0.72 [0.67, 0.77] 0.78 [0.74, 0.82] BLT-(Wh=TTD) 0.98 [0.97, 0.99] 0.88 [0.85, 0.90] BLT-(Wh=D23) 0.97 [0.96, 0.98] 0.79 [0.74, 0.83] BLT-(–ΔT) 0.94 [0.93, 0.95] 0.94 [0.92, 0.96] Note: The confidence intervals are noted in square brackets. MLT: mixed-layer temperature; TTD: top of thermocline depth. -
[1] Agarwal N, Sharma R, Parekh A, et al. 2012. Argo observations of barrier layer in the tropical Indian Ocean. Advances in Space Research, 50(5): 642–654. doi: 10.1016/j.asr.2012.05.021 [2] Bosc C, Delcroix T, Maes C. 2009. Barrier layer variability in the western Pacific warm pool from 2000 to 2007. Journal of Geophysical Research, 114(C6): C06023. doi: 10.1029/2008JC005187 [3] Chen Gengxin, Han Weiqing, Li Yuanlong, et al. 2015. Seasonal-to-Interannual time-scale dynamics of the equatorial undercurrent in the Indian Ocean. Journal of Physical Oceanography, 45(6): 1532–1553. doi: 10.1175/jpo-d-14-0225.1 [4] Chowdary J S, Srinivas G, Fousiya T S, et al. 2016. Representation of bay of bengal upper-ocean salinity in general circulation models. Oceanography, 29(2): 38–49. doi: 10.5670/oceanog.2016.37 [5] Cronin M F, McPhaden M J. 2002. Barrier layer formation during westerly wind bursts. Journal of Geophysical Research, 107(C12): 8020. doi: 10.1029/2001JC001171 [6] de Boyer Montegut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109(C12): C12003. doi: 10.1029/2004JC002378 [7] de Boyer Montegut C, Vialard J, Shenoi S S C, et al. 2007. Simulated seasonal and interannual variability of the mixed layer heat budget in the northern Indian Ocean. Journal of Climate, 20(13): 3249–3268. doi: 10.1175/JCLI4148.1 [8] Fairall C W, Bradley E F, Hare J E, et al. 2003. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. Journal of Climate, 16(4): 571–591. doi: 10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2 [9] Felton C S, Subrahmanyam B, Murty V S N, et al. 2014. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity. Journal of Geophysical Research, 119(7): 4200–4213. doi: 10.1002/2013JC009759 [10] Foltz G R, McPhaden M J. 2009. Impact of barrier layer thickness on SST in the central tropical North Atlantic. Journal of Climate, 22(2): 285–299. doi: 10.1175/2008JCLI2308.1 [11] Girishkumar M S, Ravichandran M, McPhaden M J. 2013. Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006–2007 and 2007–2008 in the Bay of Bengal. Journal of Geophysical Research, 118(5): 2426–2437. doi: 10.1002/jgrc.20192 [12] Girishkumar M S, Ravichandran M, McPhaden M J, et al. 2011. Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal. Journal of Geophysical Research, 116(C3): C03009. doi: 10.1029/2010JC006657 [13] Harenduprakash L, Mitra A K. 1988. Vertical turbulent mass flux below the sea surface and air-sea interaction—monsoon region of the Indian Ocean. Deep-Sea Research Part A. Oceanographic Research Papers, 35(3): 333–346. doi: 10.1016/0198-0149(88)90014-3 [14] Huang Boyin, Thorne P W, Banzon V F, et al. 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. Journal of Climate, 30(20): 8179–8205. doi: 10.1175/JCLI-D-16-0836.1 [15] Jinadasa S U P, Pathirana G, Ranasinghe P N, et al. 2020. Monsoonal impact on circulation pathways in the Indian Ocean. Acta Oceanologica Sinica, 39(3): 103–112. doi: 10.1007/s13131-020-1557-5 [16] Jouanno J, Marin F, du Penhoat Y, et al. 2011. Seasonal heat balance in the upper 100 m of the equatorial Atlantic Ocean. Journal of Geophysical Research, 116(C9): C09003. doi: 10.1029/2010JC006912 [17] Kumar B P, Vialard J, Lengaigne M, et al. 2012. TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Climate Dynamics, 38(7): 1521–1543. doi: 10.1007/s00382-011-1115-0 [18] Lukas R, Lindstrom E. 1991. The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research, 96(S01): 3343–3357. doi: 10.1029/90JC01951 [19] Masumoto Y, Sasaki H, Kagimoto T, et al. 2004. A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). Journal of the Earth Simulator, 1: 35–56 [20] McCreary J P Jr, Kundu P K, Molinari R L. 1993. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Progress in Oceanography, 31(3): 181–244. doi: 10.1016/0079-6611(93)90002-U [21] McPhaden M J, Foltz G R. 2013. Intraseasonal variations in the surface layer heat balance of the central equatorial Indian Ocean: the importance of zonal advection and vertical mixing. Geophysical Research Letters, 40(11): 2737–2741. doi: 10.1002/grl.50536 [22] McPhaden M J, Meyers G, Ando K, et al. 2009. RAMA: the research moored array for African-Asian-Australian monsoon analysis and prediction. Bulletin of the American Meteorological Society, 90(4): 459–480. doi: 10.1175/2008BAMS2608.1 [23] Narvekar J, Kumar S P. 2006. Seasonal variability of the mixed layer in the central Bay of Bengal and associated changes in nutrients and chlorophyll. Deep-Sea Research Part I: Oceanographic Research Papers, 53(5): 820–835. doi: 10.1016/j.dsr.2006.01.012 [24] Pathirana G, Priyadarshani K. 2020. A mini-warm pool during spring in the Bay of Bengal. Journal of the National Science Foundation of Sri Lanka, 48(4): 345–355. doi: 10.4038/jnsfsr.v48i4.9256 [25] Pathirana G, Priyadarshani K, Wang Dongxiao, et al. 2020. Effect of spring mini-warm pool on the tropical cyclones in the Bay of Bengal: case studies. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 12(4): 460–471 [26] Rao R R, Sivakumar R. 2000. Seasonal variability of near-surface thermal structure and heat budget of the mixed layer of the tropical Indian Ocean from a new global ocean temperature climatology. Journal of Geophysical Research, 105(C1): 995–1015. doi: 10.1029/1999JC900220 [27] Schott F A, McCreary J P Jr. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51(1): 1–123. doi: 10.1016/S0079-6611(01)00083-0 [28] Shee A, Sil S, Gangopadhyay A, et al. 2019. Seasonal evolution of oceanic upper layer processes in the northern Bay of Bengal following a single Argo float. Geophysical Research Letters, 46(10): 5369–5377. doi: 10.1029/2019GL082078 [29] Shenoi S S C, Shankar D, Shetye S R. 2002. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. Journal of Geophysical Research, 107(C6): 3052. doi: 10.1029/2000JC000679 [30] Shetye S R, Gouveia A D, Shankar D, et al. 1996. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. Journal of Geophysical Research, 101(C6): 14011–14025. doi: 10.1029/95JC03307 [31] Sprintall J, Tomczak M. 1992. Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research, 97(C5): 7305–7316. doi: 10.1029/92JC00407 [32] Thadathil P, Muraleedharan P M, Rao R R, et al. 2007. Observed seasonal variability of barrier layer in the Bay of Bengal. Journal of Geophysical Research, 112(C2): C02009. doi: 10.1029/2006JC003651 [33] Thadathil P, Thoppil P, Rao R R, et al. 2008. Seasonal variability of the observed barrier layer in the Arabian Sea. Journal of Physical Oceanography, 38(3): 624–638. doi: 10.1175/2007JPO3798.1 [34] Vialard J, Delecluse P. 1998a. An OGCM study for the TOGA decade. Part I: role of salinity in the physics of the Western Pacific fresh pool. Journal of Physical Oceanography, 28(6): 1071–1088. doi: 10.1175/1520-0485(1998)028<1071:AOSFTT>2.0.CO;2 [35] Vialard J, Delecluse P. 1998b. An OGCM study for the TOGA decade. Part II: barrier-layer formation and variability. Journal of Physical Oceanography, 28(6): 1089–1106. doi: 10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2 [36] Vialard J, Foltz G R, McPhaden M J, et al. 2008. Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian Oscillation in late 2007 and early 2008. Geophysical Research Letters, 35(19): L19608. doi: 10.1029/2008GL035238 [37] Vinayachandran P N, Murty V S N, Babu V R. 2002. Observations of barrier layer formation in the Bay of Bengal during summer monsoon. Journal of Geophysical Research, 107(C12): 8018. doi: 10.1029/2001JC000831 [38] Warner S J, Becherer J, Pujiana K, et al. 2016. Monsoon mixing cycles in the Bay of Bengal: a year-long subsurface mixing record. Oceanography, 29(2): 158–169. doi: 10.5670/oceanog.2016.48