Temperature coefficient of seawater pH as a function of temperature, pH, DIC and salinity

Yubin Hu

Yubin Hu. Temperature coefficient of seawater pH as a function of temperature, pH, DIC and salinity[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1955-3
Citation: Yubin Hu. Temperature coefficient of seawater pH as a function of temperature, pH, DIC and salinity[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1955-3

doi: 10.1007/s13131-021-1955-3

Temperature coefficient of seawater pH as a function of temperature, pH, DIC and salinity

Funds: The National Natural Science Foundation of China under contract No. 41806094; the Young Scholars Program of Shandong University under contract No. 2018WLJH43.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Temperature coefficient of seawater pH (∆pH/∆T) at every 5°C span from temperature 0°C to 40°C and at the experimental condition of salinity=35, DIC concentration=2 mmol/kg and pH=8.0 (25°C): experimental results are labelled by red dots; lines are derived from CO2SYS calculation based on the NBS scale (blue) and the total proton scale (green), respectively.

    Figure  2.  Temperature coefficient of seawater pH (∆pH/∆T) at different pH (25°C) from 7.5 to 10.0 and at the experimental condition of S=35, DIC concentration=2 mmol/kg: experimental results are labelled by red dots; lines are derived from CO2SYS calculation based on the NBS scale (blue) and the total proton scale (green), respectively. The error in ∆pH/∆T for each experimental data point is within ±0.000 2°C−1.

    Figure  3.  Temperature coefficient of seawater pH (∆pH/∆T) at different DIC concentrations from 1 mmol/kg to 5 mmol/kg and at the experimental condition of S=35, pH=8.0 (25oC): experimental results (orange), results derived from CO2SYS calculation based on the NBS scale (blue) and the total proton scale (green), respectively.

    Figure  4.  Temperature coefficient of seawater pH (∆pH/∆T) at different salinities from 20 to 105 and at the experimental condition of pH=8.0 (25oC): experimental results (orange), results derived from CO2SYS calculation based on the NBS scale (blue) and the total proton scale (green), respectively.

  • [1] Barron J J, Ashton C, Geary L. 2005. The effects of temperature on pH measurement. TSP-01, County Clare, Ireland: Technical Services Department, Reagecon Diagnostics Ltd, Shannon Free Zone, 1–7
    [2] Ben-Yaakov S. 1970. A method for calculating the in situ pH of seawater. Limnology and Oceanography, 15(2): 326–328. doi: 10.4319/lo.1970.15.2.0326
    [3] Dickson A G. 1990. Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion ${\rm{HSO}}_4^− $ in synthetic sea water from 273.15 to 318.15 K. Journal of Chemical Thermodynamics, 22(2): 113–127. doi: 10.1016/0021-9614(90)90074-Z
    [4] Dickson A G, Millero F J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research Part A: Oceanographic Research Papers, 34(10): 1733–1743,doi: 10.1016/0198-0149(87)90021-5
    [5] Dickson A G, Sabine C L, Christian J R E. 2007. Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, 191
    [6] Doney S C, Fabry V J, Feely R A, et al. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science, 1: 169–192. doi: 10.1146/annurev.marine.010908.163834
    [7] Easley R A, Byrne R H. 2012. Spectrophotometric calibration of pH electrodes in seawater using purified m-cresol purple. Environmental Science & Technology, 46(9): 5018–5024. doi: 10.1021/es300491s
    [8] Fabry V J, McClintock J B, Mathis J T, et al. 2009. Ocean acidification at high latitudes: The bellwether. Oceanography, 22(4): 160–171. doi: 10.5670/oceanog.2009.105
    [9] Feely R A, Doney S C, Cooley S R. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography, 22(4): 36–47. doi: 10.5670/oceanog.2009.95
    [10] Gieskes J M. 1969. Effect of temperature on the pH of seawater. Limnology and Oceanography, 14(5): 679–685. doi: 10.4319/lo.1969.14.5.0679
    [11] Gleitz M, Loeff M R V D, Thomas D N, et al. 1995. Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Marine Chemistry, 51(2): 81–91. doi: 10.1016/0304-4203(95)00053-T
    [12] Hare A A, Wang Feiyue, Barber D, et al. 2013. pH evolution in sea ice grown at an outdoor experimental facility. Marine Chemistry, 154: 46–54. doi: 10.1016/j.marchem.2013.04.007
    [13] Hunter K A. 1998. The temperature dependence of pH in surface seawater. Deep-Sea Research Part I: Oceanographic Research Papers, 45(11): 1919–1930. doi: 10.1016/S0967-0637(98)00047-8
    [14] IPCC. 2014. Climate Change 2013—The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1535
    [15] Kadis R, Leito I. 2010. Evaluation of the residual liquid junction potential contribution to the uncertainty in pH measurement: A case study on low ionic strength natural waters. Analytica Chimica Acta, 664(2): 129–135. doi: 10.1016/j.aca.2010.02.007
    [16] Lui Hon-Kit, Chen Chen-Tung Arthur. 2017. Reconciliation of pH25 and pHinsitu acidification rates of the surface oceans: A simple conversion using only in situ temperature. Limnology and Oceanography: Methods, 15(3): 328–335. doi: 10.1002/lom3.10170
    [17] Marion G M, Millero F J, Camães M F, et al. 2011. pH of seawater. Marine Chemistry, 126(1–4): 89–96. doi: 10.1016/j.marchem.2011.04.002
    [18] Mehrbach C, Culberson C H, Hawley J E, et al. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18(6): 897–907. doi: 10.4319/lo.1973.18.6.0897
    [19] Middelboe A L, Hansen P J. 2007. High pH in shallow-water macroalgal habitats. Marine Ecology Progress Series, 338: 107–117. doi: 10.3354/meps338107
    [20] Millero F J. 1979. The thermodynamics of the carbonate system in seawater. Geochimica et Cosmochimica Acta, 43(10): 1651–1661. doi: 10.1016/0016–7037(79)90184–4
    [21] Millero F J. 2006. Chemical Oceanography. 3rd ed. Boca Raton: CRC Press, 62
    [22] Orr J C, Fabry V J, Aumont O, et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059): 681–686. doi: 10.1038/nature04095
    [23] Papadimitriou S, Loucaides S, Rérolle V, et al. 2016. The measurement of pH in saline and hypersaline media at sub-zero temperatures: Characterization of Tris buffers. Marine Chemistry, 184: 11–20. doi: 10.1016/j.marchem.2016.06.002
    [24] Pierrot D E, Lewis E, Wallace D W R. 2006. MS Excel program developed for CO2 system calculations. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy,
    [25] Steinacher M, Joos F, Frölicher T L, et al. 2009. Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 6(4): 515–533. doi: 10.5194/bg-6-515-2009
    [26] Uppström L R. 1974. The Boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep-Sea Research and Oceanographic Abstracts, 21(2): 161–162. doi: 10.1016/0011-7471(74)90074-6
    [27] Van Alstyne K L, Nelson T A, Ridgway R L. 2015. Environmental chemistry and chemical ecology of “green tide” seaweed blooms. Integrative and Comparative Biology, 55(3): 518–532. doi: 10.1093/icb/icv035
    [28] Yamamoto-Kawai M, McLaughlin F A, Carmack E C, et al. 2009. Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt. Science, 326(5956): 1098–1100. doi: 10.1126/science.1174190
  • 加载中
计量
  • 文章访问数:  97
  • HTML全文浏览量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 录用日期:  2021-10-20
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回