Spatiotemporal variation and mechanisms of temperature inversion in the Bay of Bengal and the eastern equatorial Indian Ocean

K M Azam Chowdhury Wensheng Jiang Guimei Liu Md Kawser Ahmed Shaila Akhter

K M Azam Chowdhury, Wensheng Jiang, Guimei Liu, Md Kawser Ahmed, Shaila Akhter. Spatiotemporal variation and mechanisms of temperature inversion in the Bay of Bengal and the eastern equatorial Indian Ocean[J]. Acta Oceanologica Sinica, 2022, 41(4): 23-39. doi: 10.1007/s13131-021-1873-4
Citation: K M Azam Chowdhury, Wensheng Jiang, Guimei Liu, Md Kawser Ahmed, Shaila Akhter. Spatiotemporal variation and mechanisms of temperature inversion in the Bay of Bengal and the eastern equatorial Indian Ocean[J]. Acta Oceanologica Sinica, 2022, 41(4): 23-39. doi: 10.1007/s13131-021-1873-4

doi: 10.1007/s13131-021-1873-4

Spatiotemporal variation and mechanisms of temperature inversion in the Bay of Bengal and the eastern equatorial Indian Ocean

Funds: The Marine Scholarship of China, China Scholarship Council (CSC) for International Doctoral Students under contract No. 2017SOA016552; the National Natural Science Foundation of China under contract Nos U2106204 and 41676003.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The number distribution of Argo profiles at 1°×1° grid in the Bay of Bengal and the eastern equatorial Indian Ocean (EEIO). The red dashed line is the boundary between the Bay of Bengal and the EEIO. The eight RAMA mooring buoy are marked by the red diamonds. GBM is short for the Ganges-Brahmaputra-Meghna Rivers; SL is short for the country name Sri Lanka; and IND is for Indonesia.

    Figure  2.  Pictorial presentation of different parameters related to temperature inversion (a), and non-inversion (b) profiles. MLD: mixed layer depth; ILD: isothermal layer depth.

    Figure  3.  Monthly variations in ILD (a), and mixed layer depth (b) using two different calculation methods.

    Figure  4.  Distribution of temperature inversion profiles in various seasons over 2004 to 2020 (a–d), and monthly percentages of temperature inversion profiles (e).

    Figure  5.  Season-wise spatial distribution of ∆T (a–d), thicknesses of inversion layer (e–h), and depth of peak temperature with the contours of initial inversion depth (i–l).

    Figure  6.  Spatial distribution of the mixed layer temperature (a–d), mixed layer salinity (e–h) of temperature inversion profiles, and monthly variation in mixed layer temperature (i), and mixed layer salinity (j).

    Figure  7.  Spatiotemporal distribution of net surface heat flux (a–d), and E-P (e–h). Black dots refer to the location of temperature inversion profiles. Mixed layer (ML) heat budget and salt budget in the northern Bay of Bengal (i, j), southern Bay of Bengal (k, l), and EEIO (m, n), respectively.

    Figure  8.  Basin averaged monthly variation of the 32.5-isohaline depth and the percentages of temperature inversion (a), water column stratification (s−2) in temperature inversion and non-inversion profiles (b), spatiotemporal distribution of ∆S (c–f), monthly variation of ∆T and ∆S (g), and their correlations (h).

    Figure  9.  Spatiotemporal distribution of the 35-isohaline depth overlaid with the salinity (contours) at 50-m depth, and occurrence of temperature inversion (black dots).

    Figure  10.  Spatiotemporal distribution of the depth of 26°C isotherm overlaid with the temperature (contours) at 50-m depth, and surface current vectors (a–d), monthly variation of 35-isohaline depth, depth of 26°C isotherm, and temperature inversion profiles along the EEIO (e).

    Figure  11.  Spatiotemporal distribution of the wind turbulent kinetic energy (a–d), and monthly variation in wind turbulent kinetic energy and temperature inversion (e).

    Figure  12.  Spatial distribution of the amount of heat penetrated below mixed layer depth (MLD) (a–d), monthly distribution of the amount of heat penetrated below MLD (e), MLD in temperature inversion profiles, and incoming shortwave radiation (f), and stratification in the surface water (g).

    Figure  13.  Season-wise spatial distribution of mixed layer depth (MLD) (shading) overlaid with contours of initial inversion depth (a–d), isothermal layer depth (ILD) (shading) with contours of depth of peak temperature (e–h), and barrier layer thickness (BLT) (shading) with the contours of thickness of inversion layer (i–l).

    Figure  14.  A sketch of the spatiotemporal distribution and dominant formation mechanisms of temperature inversion in the Bay of Bengal and EEIO. Green dots refer to the location of temperature inversion profiles.

    Table  1.   Basin averaged monthly mean of different characteristic parameters of temperature inversion derived from Argo data

    ParametersJan.Feb.Mar.Apr.MayJun.Jul.Aug.Sept.Oct.Nov.Dec.
    Inversion profiles1 5181 31656798106226214239427496718978

    Inversion/%
    22.019.18.21.41.53.33.13.56.27.210.414.2

    T/°C
    1.61.30.70.40.30.40.30.50.30.40.60.9

    Initial inversion depth/m
    19.420.921.611.117.322.929.321.516.514.914.818.0

    Depth of peak temperature/m
    52.954.748.821.231.441.553.543.533.130.434.642.6

    Thickness of the inversion layer/m
    52.252.643.219.423.228.134.535.127.026.131.138.5
    下载: 导出CSV

    Table  2.   Temporal mean over 2007 to 2020 of different characteristic parameters of temperature inversion, and seasonal distribution of inversion in different RAMA buoy positions

    RAMA positionTotal profilesPercentage of total TI/%Mean ∆T/°CMean
    DPT/m
    Winter
    /%
    Spring
    /%
    Summer
    /%
    Autumn
    /%
    0°, 80.5°E3 5112.20.3251.724.77.247.420.6
    0°, 90°E3 6122.30.2855.723.28.526.841.5
    1.5°S, 80.5°E4 2363.30.4227.625.415.632.027.0
    4°S, 80.5°E3 5131.50.3429.520.822.628.328.3
    4°N, 90°E2 2823.90.3635.548.913.36.731.1
    8°N, 90°E2 9106.10.3548.470.410.62.816.2
    12°N. 90°E4 6117.80.3847.570.712.08.48.9
    15°N, 90°E4 21924.50.7344.470.66.210.912.3
    Note: TI stands for temperature inversion and DPT stands for depth of peak temperature. Temperature inversion along EEIO during summer and autumn, and along the Bay of Bengal during winter are remarkable, and thus, shown to be “bold italic” faces.
    下载: 导出CSV

    Table  3.   Correlation between the number of temperature inversion with associated parameters in the study domain

    MHFNHFMLTMFWFE–PMLSSD32.5 isohalineW.TKE
    Number of temperature inversion−0.76−0.79−0.910.410.46−0.540.940.700.44−0.42
    Note: MHF, NHF, MLT, MFWF, MLS, and W.TKE represent mixed layer heat flux, net surface heat flux, mixed layer temperature, mixed layer fresh-water flux, mixed layer salinity, and wind turbulent kinetic energy, respectively. More than 95% significant correlations are shown to be “bold italic” faces.
    下载: 导出CSV
  • [1] Akhil V P, Durand F, Lengaigne M, et al. 2014. A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal. Journal of Geophysical Research: Oceans, 119(6): 3926–3947. doi: 10.1002/2013JC009632
    [2] Argo. 2021. Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). Plouzané: SEANOE,
    [3] Balaguru K, Chang Ping, Saravanan R, et al. 2012. Ocean barrier layers’ effect on tropical cyclone intensification. Proceedings of the National Academy of Sciences of the United States of America, 109(36): 14343–14347. doi: 10.1073/pnas.1201364109
    [4] Chaitanya A V S, Lengaigne M, Vialard J, et al. 2014. Salinity measurements collected by fishermen reveal a “River in the Sea” flowing along the eastern coast of India. Bulletin of the American Meteorological Society, 95(12): 1897–1908. doi: 10.1175/BAMS-D-12-00243.1
    [5] Chowdhury K M A, Jiang Wensheng, Liu Guimei, et al. 2019. Formation and types of thermal inversion in the Bay of Bengal. CLIVAR Exchanges, 76: 20–23
    [6] Chowdhury K M A, Mahbub-E-Kibria A S M, Akhter S, et al. 2017. Variation of water column density in the Bay of Bengal aquatic ecosystem. International Journal of Fisheries and Aquatic Studies, 5(6): 34–40
    [7] De Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. doi: 10.1029/2004jc002378
    [8] De Boyer Montégut C, Mignot J, Lazar A, et al. 2007. Control of salinity on the mixed layer depth in the world ocean: 1. general description. Journal of Geophysical Research: Oceans, 112(C6): C06011. doi: 10.1029/2006JC003953
    [9] Durand F, Shetye S R, Vialard J, et al. 2004. Impact of temperature inversions on SST evolution in the South-Eastern Arabian Sea during the pre-summer monsoon season. Geophysical Research Letters, 31(1): L01305. doi: 10.1029/2003GL018906
    [10] Foltz G R, McPhaden M J. 2009. Impact of barrier layer thickness on SST in the central tropical North Atlantic. Journal of Climate, 22(2): 285–299. doi: 10.1175/2008JCLI2308.1
    [11] Girishkumar M S, Ravichandran M, McPhaden M J. 2013. Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006–2007 and 2007–2008 in the Bay of Bengal. Journal of Geophysical Research: Oceans, 118(5): 2426–2437. doi: 10.1002/jgrc.20192
    [12] Girishkumar M S, Ravichandran M, McPhaden M J, et al. 2011. Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal. Journal of Geophysical Research: Oceans, 116(C3): C03009. doi: 10.1029/2010JC006657
    [13] Godfrey J S, Lindstrom E J. 1989. The heat budget of the equatorial western Pacific surface mixed layer. Journal of Geophysical Research: Oceans, 94(C6): 8007–8017. doi: 10.1029/JC094iC06p08007
    [14] Halkides D, Lee T. 2011. Mechanisms controlling seasonal mixed layer temperature and salinity in the southwestern tropical Indian Ocean. Dynamics of Atmospheres and Oceans, 51(3): 77–93. doi: 10.1016/j.dynatmoce.2011.03.002
    [15] He Qingyou, Zhan Haigang, Cai Shuqun. 2020. Anticyclonic eddies enhance the winter barrier layer and surface cooling in the Bay of Bengal. Journal of Geophysical Research: Oceans, 125(10): e2020JC016524. doi: 10.1029/2020JC016524
    [16] Kara A B, Rochford P A, Hurlburt H E. 2000. Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. Journal of Geophysical Research: Oceans, 105(C7): 16783–16801. doi: 10.1029/2000JC900071
    [17] Kashem M, Ahmed M K, Qiao Fangli, et al. 2019. The response of the upper ocean to tropical cyclone Viyaru over the Bay of Bengal. Acta Oceanologica Sinica, 38(1): 61–70. doi: 10.1007/s13131-019-1370-1
    [18] Kumari A, Kumar S P, Chakraborty A. 2018. Seasonal and interannual variability in the barrier layer of the Bay of Bengal. Journal of Geophysical Research: Oceans, 123(2): 1001–1015. doi: 10.1002/2017JC013213
    [19] Kurian J, Vinayachandran P N. 2006. Formation mechanisms of temperature inversions in the southeastern Arabian Sea. Geophysical Research Letters, 33(17): L17611. doi: 10.1029/2006GL027280
    [20] Li Kuiping, Wang Haiyuan, Yang Yang, et al. 2016. Observed characteristics and mechanisms of temperature inversion in the northern Bay of Bengal. Haiyang Xuebao, 38(7): 22–31
    [21] Li Jian, Yang Lei, Shu Yeqiang, et al. 2012. Temperature inversion in the Bay of Bengal prior to the summer monsoon onsets in 2010 and 2011. Atmospheric and Oceanic Science Letters, 5(4): 290–294. doi: 10.1080/16742834.2012.11447004
    [22] Luis A J, Kawamura H. 2000. Wintertime wind forcing and sea surface cooling near the south India tip observed using NSCAT and AVHRR. Remote Sensing of Environment, 73(1): 55–64. doi: 10.1016/S0034-4257(00)00081-X
    [23] Ma Tian, Qi Yiquan, Cheng Xuhua. 2019. Intraseasonal-to-semiannual variability of barrier layer thickness in the eastern equatorial Indian Ocean and Bay of Bengal. Journal of Tropical Oceanography, 38(5): 18–31
    [24] Masson S, Delecluse P, Boulanger J P, et al. 2002. A model study of the seasonal variability and formation mechanisms of the barrier layer in the eastern equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 107(C12): 8017. doi: 10.1029/2001JC000832
    [25] Mignot J, Lazar A, Lacarra M. 2012. On the formation of barrier layers and associated vertical temperature inversions: a focus on the northwestern tropical Atlantic. Journal of Geophysical Research: Oceans, 117(C2): C02010. doi: 10.1029/2011JC007435
    [26] Monterey G I, Levitus S. 1997. Seasonal Variability of Mixed Layer Depth for the World Ocean. Silver Spring: NOAA
    [27] Morel A, Antoine D. 1994. Heating rate within the upper ocean in relation to its bio-optical state. Journal of Physical Oceanography, 24(7): 1652–1665. doi: 10.1175/1520-0485(1994)024<1652:HRWTUO>2.0.CO;2
    [28] Nagata Y. 1970. Detailed temperature cross section of the cold-water belt along the northern edge of the Kuroshio. Journal of Marine Research, 28(1): 1–14
    [29] Pant V, Girishkumar M S, Bhaskar T V S U, et al. 2015. Observed interannual variability of near-surface salinity in the Bay of Bengal. Journal of Geophysical Research: Oceans, 120(5): 3315–3329. doi: 10.1002/2014JC010340
    [30] Qu Tangdong, Meyers G. 2005. Seasonal variation of barrier layer in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 110(C11): C11003. doi: 10.1029/2004JC002816
    [31] Rao B P, Babu V R, Chandramohan P. 1987. Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 96(1): 69–79. doi: 10.1007/BF02842639
    [32] Rao R R, Kumar M S G, Ravichandran M, et al. 2010. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep-Sea Research Part I: Oceanographic Research Papers, 57(1): 1–13. doi: 10.1016/j.dsr.2009.10.008
    [33] Rao R R, Rao D S, Murthy P G K, et al. 1983. A preliminary investigation of the summer monsoonal forcing on the thermal structure of upper Bay of Bengal during Monex-79. Mausum, 32: 85–92
    [34] Rao R R, Sivakumar R. 2003. Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. Journal of Geophysical Research: Oceans, 108(C1): 3009. doi: 10.1029/2001JC000907
    [35] Roseli N H, Akhir M F, Husain M L, et al. 2015. Water mass characteristics and stratification at the shallow Sunda Shelf of southern South China Sea. Open Journal of Marine Science, 5(4): 455–467. doi: 10.4236/ojms.2015.54036
    [36] Schiller A, Godfrey J S. 2003. Indian Ocean intraseasonal variability in an ocean general circulation model. Journal of Climate, 16(1): 21–39. doi: 10.1175/1520-0442(2003)016<0021:IOIVIA>2.0.CO;2
    [37] Shankar D, Gopalakrishna V V, Shenoi S S C, et al. 2004. Observational evidence for westward propagation of temperature inversions in the southeastern Arabian Sea. Geophysical Research Letters, 31(8): L08305. doi: 10.1029/2004GL019652
    [38] Shankar D, Remya R, Vinayachandran P N, et al. 2016. Inhibition of mixed-layer deepening during winter in the northeastern Arabian Sea by the West India Coastal Current. Climate Dynamics, 47(3-4): 1049–1072. doi: 10.1007/s00382-015-2888-3
    [39] Shee A, Sil S, Gangopadhyay A, et al. 2019. Seasonal evolution of oceanic upper layer processes in the northern Bay of Bengal following a single Argo float. Geophysical Research Letters, 46(10): 5369–5377. doi: 10.1029/2019GL082078
    [40] Shetye S R, Gouveia A D, Shankar D, et al. 1996. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. Journal of Geophysical Research: Oceans, 101(C6): 14011–14025. doi: 10.1029/95JC03307
    [41] Shetye S R, Gouveia A D, Shenoi S S C, et al. 1993. The western boundary current of the seasonal subtropical gyre in the Bay of Bengal. Journal of Geophysical Research: Oceans, 98(C1): 945–954. doi: 10.1029/92JC02070
    [42] Sprintall J, Tomczak M. 1992. Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research: Oceans, 97(C5): 7305–7316. doi: 10.1029/92JC00407
    [43] Srivastava A, Dwivedi S, Mishra A K. 2018. Investigating the role of air-sea forcing on the variability of hydrography, circulation, and mixed layer depth in the Arabian Sea and Bay of Bengal. Oceanologia, 60(2): 169–186. doi: 10.1016/j.oceano.2017.10.001
    [44] Suryanarayana A, Murty V S N, Rao D P. 1993. Hydrography and circulation of the Bay of Bengal during early winter, 1983. Deep-Sea Research Part I: Oceanographic Research Papers, 40(1): 205–217. doi: 10.1016/0967-0637(93)90061-7
    [45] Sweeney C, Gnanadesikan A, Griffies S M, et al. 2005. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. Journal of Physical Oceanography, 35(6): 1103–1119. doi: 10.1175/JPO2740.1
    [46] Thadathil P, Gopalakrishna V V, Muraleedharan P M, et al. 2002. Surface layer temperature inversion in the Bay of Bengal. Deep-Sea Research Part I: Oceanographic Research Papers, 49(10): 1801–1818. doi: 10.1016/S0967-0637(02)00044-4
    [47] Thadathil P, Gosh A K. 1992. Surface layer temperature inversion in the Arabian Sea during winter. Journal of Oceanography, 48(3): 293–304. doi: 10.1007/BF02233989
    [48] Thadathil P, Muraleedharan P M, Rao R R, et al. 2007. Observed seasonal variability of barrier layer in the Bay of Bengal. Journal of Geophysical Research: Oceans, 112(C2): C02009. doi: 10.1029/2006JC003651
    [49] Thadathil P, Suresh I, Gautham S, et al. 2016. Surface layer temperature inversion in the Bay of Bengal: main characteristics and related mechanisms. Journal of Geophysical Research: Oceans, 121(8): 5682–5696. doi: 10.1002/2016JC011674
    [50] Thompson B, Gnanaseelan C, Salvekar P S. 2006. Seasonal evolution of temperature inversions in the north Indian Ocean. Current Science, 90(5): 697–704
    [51] Ueno H, Oka E, Suga T, et al. 2005. Seasonal and interannual variability of temperature inversions in the subarctic North Pacific. Geophysical Research Letters, 32(20): L20603. doi: 10.1029/2005GL023948
    [52] Vialard J, Delecluse P. 1998. An OGCM study for the TOGA decade. Part II: barrier-Layer formation and variability. Journal of Physical Oceanography, 28(6): 1089–1106. doi: 10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2
    [53] Vialard J, Foltz G R, McPhaden M J, et al. 2008. Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian Oscillation in late 2007 and early 2008. Geophysical Research Letters, 35(19): L19608. doi: 10.1029/2008GL035238
    [54] Vinayachandran P N, Murty V S N, Babu V R. 2002. Observations of barrier layer formation in the Bay of Bengal during summer monsoon. Journal of Geophysical Research: Oceans, 107(C12): 8018. doi: 10.1029/2001JC000831
    [55] Vinayachandran P N, Shankar D, Vernekar S, et al. 2013. A summer monsoon pump to keep the Bay of Bengal salty. Geophysical Research Letters, 40(9): 1777–1782. doi: 10.1002/grl.50274
    [56] Wong A, Keeley R, Carval T, et al. 2021. Argo quality control manual for CTD and trajectory data.https://archimer.ifremer.fr/doc/00228/33951/32470.pdf [2021-05-11/2021-06-20]
    [57] Wyrtki K, Bennett E B, Rochford D J. 1971. Oceanographic Atlas of the International Indian Ocean Expedition. Washington: National Science Foundation, 531
    [58] Yu Lisan. 2003. Variability of the depth of the 20°C isotherm along 6°N in the Bay of Bengal: its response to remote and local forcing and its relation to satellite SSH variability. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(12–13): 2285–2304. doi: 10.1016/S0967-0645(03)00057-2
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1271
  • HTML全文浏览量:  380
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 录用日期:  2021-06-11
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回