Parentage determination of black sea bream (Acanthopagrus schlegelii) for stock enhancement: effectiveness and loss of genetic variation

Binbin Shan Yan Liu Na Song Changping Yang Shengnan Liu Tianxiang Gao Dianrong Sun

Binbin Shan, Yan Liu, Na Song, Changping Yang, Shengnan Liu, Tianxiang Gao, Dianrong Sun. Parentage determination of black sea bream (Acanthopagrus schlegelii) for stock enhancement: effectiveness and loss of genetic variation[J]. Acta Oceanologica Sinica, 2021, 40(6): 41-49. doi: 10.1007/s13131-020-1697-7
Citation: Binbin Shan, Yan Liu, Na Song, Changping Yang, Shengnan Liu, Tianxiang Gao, Dianrong Sun. Parentage determination of black sea bream (Acanthopagrus schlegelii) for stock enhancement: effectiveness and loss of genetic variation[J]. Acta Oceanologica Sinica, 2021, 40(6): 41-49. doi: 10.1007/s13131-020-1697-7

doi: 10.1007/s13131-020-1697-7

Parentage determination of black sea bream (Acanthopagrus schlegelii) for stock enhancement: effectiveness and loss of genetic variation

Funds: The Science and Technology Project of Guangdong Province under contract No. 2019B121201001; the National Key R&D Program of China under contract No. 2019YFD0901301; the Fund of China-Vietnam Joint Survey on Fish Stocks in the Common Fishing Zone of the Beibu Gulf; the Central Public-interest Scientific Institution Basal Research Fund, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science under contract No. 2021SD14; the China-ASEAN Maritime Cooperation Fund (China-Vietnam Fishery Stock Enhancement and Conservation in Beibu Gulf); the Hainan Provincial Natural Science Foundation of China under contract No. 320QN358.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The approximate location of sampling localities.

    Figure  2.  The distribution of the broodfish’s contribution to offspring.

    Figure  3.  The numbers of offspring and body length of breeders.

    Figure  4.  Standard length frequency distribution of A. schlegelii.

    Table  1.   Information about the releasing

    Releasing date (yy/mm/dd)Releasing siteReleasing numberBody length/mmBody weight/g
    2015/05/22ZRE73 00030.430.71
    2015/06/29 ZRE17 00040.422.02
    2015/06/29 DB18 000 40.422.02
    2015/07/29DB5 50080.7817.97
    Note: ZRE, Zhujiang River Esturay; DB, Daya Bay.
    下载: 导出CSV

    Table  2.   Sample information of A. schlegelii

    Recapture time (yy/mm/dd)Recapture siteNumber of total samplesNumber of genotyped individuals
    2015/08/16–2015/08/24ZRE17296
    2015/08/03–2015/08/26DB12396
    2015/09/04ZRE10397
    2015/10/01ZRE203203
    2015/12/01ZRE4242
    2016/03ZRE2828
    2016/04ZRE2121
    Total692583
    Note: ZRE, Zhujiang River Esturay; DB, Daya Bay; –, no data.
    下载: 导出CSV

    Table  3.   Parameters of microsatellite loci in identification of hatchery-released individuals and parentage assignments

    LocusMeanCombine NE-PP
    Asca1Asca3Asca6Asca4Asca16Asca17
    Parentage assignmentsNE-PP0.5770.0880.3980.2510.0770.1010.000 03
    PIC0.4260.8670.5760.7420.8780.8570.724
    Identification of hatchery-released individualsNE-PP0.3390.0660.2510.2080.1480.0790.000 013
    PIC0.6390.8860.690.7750.8080.8770.779
    Note: PIC, polymorphic information content; NE-PP, average non-exclusion probability for a candidate parent pair.
    下载: 导出CSV

    Table  4.   The quantity and percentage of released-recaptured A. schlegelii in samples

    Recapture date (yy/mm/dd)Recapture siteNumber of genotyped individualsNumber of released-recaptured fishRate/%
    2015/08/16–2015/08/24ZRE963334.4
    2015/08/03–2015/08/26DB961515.6
    2015/09/04ZRE972121.6
    2015/10/01ZRE2035326.1
    2015/12/01ZRE421126.2
    2016/03ZRE28621.4
    2016/04ZRE21419.0
    Total58314324.5
    下载: 导出CSV

    Table  5.   Genetic variability in broodfish, hatchery-released fish, and recaptured fish

    nAARHEHoIFisHWE
    Broodfish936911.1080.7740.7541.8820.027NS
    Hatchery-released fish141619.2850.7270.7581.706–0.046
    WZRE35911515.1190.8200.7432.1390.096
    RZRE48711514.4690.8030.7402.0710.083
    WDB81599.7550.7330.7871.628–0.117
    RDB96599.4610.7240.7801.605–0.113
    Note: RZRE, recaptured fish in the Zhujiang River Estuary; WZRE, wild fish in recaptured fish in the Zhujiang River Estuary; RDB, recaptured fish in the Daya Bay; and WDB, wild fish in recaptured fish in the Daya Bay. A, number of alleles; AR, allele richness; HE, heterozygosity alleles; I, Shannon index; HWE, deviations from Hardy-Weinberg equilibrium; n, sample size; Ho, observed heterozygosity; Fis, fixation index; NS, P < 0.05; *P < 0.05; –, no data.
    下载: 导出CSV

    Table  6.   Estimates of FST (below diagonal) and genetic distance (above diagonal) value

    BroodstockHatchery-reared fishWZRERZREWDBRDB
    Broodstock0.0260.0810.0610.1050.097
    Hatchery-released fish0.004*0.0970.0740.1180.108
    WZRE0.025*0.034*0.0030.1380.132
    RZRE0.015*0.022*0.001*0.1200.113
    WDB0.039*0.049*0.0410.034*0.002
    RDB0.035*0.044*0.040*0.032*–0.005
    Note: RZRE, recaptured fish in the Zhujiang River Estuary; WZRE, wild fish in recaptured fish in the Zhujiang River Estuary; RDB, recaptured fish in the Daya Bay; and WDB, wild fish in recaptured fish in the Daya Bay. *P < 0.05; –, no data.
    下载: 导出CSV
  • [1] Allendorf F W, Phelps S R. 1980. Loss of genetic variation in a hatchery stock of cutthroat trout. Transactions of the American Fisheries Society, 109(5): 537–543. doi: 10.1577/1548-8659(1980)109<537:LOGVIA>2.0.CO;2
    [2] Bell J D, Leber K M, Blankenship H L, et al. 2008. A new era for restocking, stock enhancement and sea ranching of coastal fisheries resources. Reviews in Fisheries Science, 16(1–3): 1–9. doi: 10.1080/10641260701776951
    [3] Borrell Y J, Alvarez J, Blanco G, et al. 2011. A parentage study using microsatellite loci in a pilot project for aquaculture of the European anchovy Engraulis encrasicolus L. Aquaculture, 310(3–4): 305–311. doi: 10.1016/j.aquaculture.2010.10.025
    [4] Campton D E. 1995. Genetic effects of hatchery fish on wild populations of Pacific salmon and steelhead: what do we really know?. Transactions of the American Fisheries Society, 15: 337–353
    [5] Cheng Weiwei, Wang Dengqiang, Wei Qiwei, et al. 2014. Effect of restocking enkancement of Chinese sucker in the middle and upper reaches of Yangtze River based on microsatellite loci. Journal of Fishery Sciences of China (in Chinese), 21(3): 574–580
    [6] Escalante M A, García-De-León F J, Dillman C B, et al. 2014. Genetic introgression of cultured rainbow trout in the Mexican native trout complex. Conservation Genetics, 15(5): 1063–1071. doi: 10.1007/s10592-014-0599-7
    [7] FAO. 2016. The State of World Fisheries and Aquaculture 2016. Rome: Food and Agriculture Organization of the United Nations, 5–6
    [8] Franklin I R. 1980. Evolutionary change in small populations. In: Soule M J, Wilcox B A, eds. Conservation Biology: an Evolutionary-Ecological Perspective. Sunderland: Sinauer Associates, 135–149
    [9] Gall G A E. 1987. Inbreeding. In: Ryman N, Utter F, eds. Population Genetics & Fishery Management. Seattle, WA: University Washington Press, 47–87
    [10] Gonzalez E B, Aritaki M, Sakurai S, et al. 2013. Inference of potential genetic risks associated with large-scale releases of red sea bream in Kanagawa Prefecture, Japan based on nuclear and mitochondrial DNA analysis. Marine Biotechnology, 15(2): 206–220. doi: 10.1007/s10126-012-9479-7
    [11] Gonzalez E B, Nagasawa K, Umino T. 2008. Stock enhancement program for black sea bream (Acanthopagrus schlegelii) in Hiroshima Bay: monitoring the genetic effects. Aquaculture, 276(1–4): 36–43. doi: 10.1016/j.aquaculture.2008.02.004
    [12] Gonzalez E B, Taniguchi N, Umino T. 2010. Can ordinary single-day egg collection increase the effective population size in broodstock management programs? Breeder-offspring assignment in black sea bream (Acanthopagrus schlegelii) through two-hourly intervals. Aquaculture, 308: S12–S19. doi: 10.1016/j.aquaculture.2010.06.031
    [13] Hamasaki K, Toriya S, Shishidou H, et al. 2010. Genetic effects of hatchery fish on wild populations in red sea bream Pagrus major (Perciformes, Sparidae) inferred from a partial sequence of mitochondrial DNA. Journal of Fish Biology, 77(9): 2123–2136. doi: 10.1111/j.1095-8649.2010.02826.x
    [14] Hara M, Sekino M. 2003. Efficient detection of parentage in a cultured Japanese flounder Paralichthys olivaceus using microsatellite DNA marker. Aquaculture, 217(1–4): 107–114. doi: 10.1016/S0044-8486(02)00069-8
    [15] Hedgecock D, Coykendall K. 2007. Genetic risks of marine hatchery enhancement: The good, the bad, and the unknown. In: Bert T M, ed. Ecological and Genetic Implications of Aquaculture Activities. Dordrecht: Springer Press, 85–101
    [16] Hedgecock D, Sly F. 1990. Genetic drift and effective population sizes of hatchery-propagated stocks of the Pacific oyster, Crassostrea gigas. Aquaculture, 88(1): 21–38. doi: 10.1016/0044-8486(90)90316-F
    [17] Iguchi K I, Watanabe K, Nishida M. 1999. Reduced mitochondrial DNA variation in hatchery populations of ayu (Plecoglossus altivelis) cultured for multiple generations. Aquaculture, 178(3–4): 235–243. doi: 10.1016/S0044-8486(99)00133-7
    [18] Jenkins W E, Denson M R, Bridgham C B, et al. 2004. Year-class component, growth, and movement of juvenile red drum stocked seasonally in a South Carolina estuary. North American Journal of Fisheries Management, 24(2): 636–647. doi: 10.1577/M02-166.1
    [19] Jeong D S, Gonzalez E B, Morishima K, et al. 2007. Parentage assignment of stocked black sea bream Acanthopagrus schlegelii in Hiroshima Bay using microsatellite DNA markers. Fisheries Science, 73(4): 823–830. doi: 10.1111/j.1444-2906.2007.01402.x
    [20] Jeong D S, Umino T, Kuroda K, et al. 2003. Genetic divergence and population structure of black sea bream Acanthopagrus schlegeli inferred from microsatellite analysis. Fisheries Science, 69(5): 896–902. doi: 10.1046/j.1444-2906.2003.00705.x
    [21] Kalinowski S T, Taper M L, Marshall T C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5): 1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x
    [22] Karlsson S, Saillant E, Bumguardner B W, et al. 2008. Genetic identification of hatchery-released red drum in Texas bays and estuaries. North American Journal of Fisheries Management, 28(4): 1294–1304. doi: 10.1577/M07-181.1
    [23] Lin Jin, Chen Tao, Chen Lin, et al. 2001. The techniques of Sparus marocephalus tagged and released in Daya Bay. Journal of Fisheries of China (in Chinese), 25(1): 79–83
    [24] Marshall T C, Slate J, Kruuk L E B, et al. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7(5): 639–655. doi: 10.1046/j.1365-294x.1998.00374.x
    [25] Meffe G K. 1986. Conservation genetics and the management of endangered fishes. Fisheries, 11(1): 14–23. doi: 10.1577/1548-8446(1986)011<0014:CGATMO>2.0.CO;2
    [26] Molony B W, Lenanton R, Jackson G, et al. 2003. Stock enhancement as a fisheries management tool. Reviews in Fish Biology and Fisheries, 13(4): 409–432. doi: 10.1007/s11160-004-1886-z
    [27] Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3): 583–590. doi: 10.1093/genetics/89.3.583
    [28] Perez-Enriquez R, Takagi M, Taniguchi N. 1999. Genetic variability and pedigree tracing of a hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture, 173(1–4): 413–423. doi: 10.1016/S0044-8486(98)00469-4
    [29] Raymond M, Rousset F. 1995. GENEPOP (Version 1.2): population genetic software for exact tests and ecumenicism. Journal of Heredity, 86(3): 248–249. doi: 10.1093/oxfordjournals.jhered.a111573
    [30] Rice W R. 1989. Analyzing tables of statistical tests. Evolution, 43(1): 223–225. doi: 10.1111/j.1558-5646.1989.tb04220.x
    [31] Sekino M, Hara M, Taniguchi N. 2002. Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture, 213(1–4): 101–122. doi: 10.1016/S0044-8486(01)00885-7
    [32] Sekino M, Saitoh K, Yamada T, et al. 2005. Genetic tagging of released Japanese flounder (Paralichthys olivaceus) based on polymorphic DNA markers. Aquaculture, 244(1-4): 49–61. doi: 10.1016/j.aquaculture.2004.11.006
    [33] Smith P J, Conroy A M. 1992. Loss of genetic variation in hatchery-produced abalone, Haliotis iris. New Zealand Journal of Marine and Freshwater Research, 26(1): 81–85. doi: 10.1080/00288330.1992.9516503
    [34] Støttrup J G, Sparrevohn C R, Modin J, et al. 2002. The use of releases of reared fish to enhance natural populations: a case study on turbot Psetta maxima (Linné, 1758). Fisheries Research, 59(1–2): 161–180. doi: 10.1016/S0165-7836(01)00413-1
    [35] Taniguchi N, Sumantadinata K, Iyama S. 1983. Genetic change in the first and second generations of hatchery stock of black seabream. Aquaculture, 35: 309–320. doi: 10.1016/0044-8486(83)90103-5
    [36] Van Oosterhout C, Hutchinson W F, Wills D P M, et al. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3): 535–538. doi: 10.1111/j.1471-8286.2004.00684.x
    [37] Waples R S. 1999. Dispelling some myths about hatcheries. Fisheries, 24(2): 12–21. doi: 10.1577/1548-8446(1999)024<0012:DSMAH>2.0.CO;2
    [38] Zhong Xiaming, Ni Jindi, Tang Jianhua, et al. 1998. Artificial reproduction and stock enhancement of Acanthopagrus schlegelii. Journal of Aquaculture (in Chinese), (5): 28–29
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  111
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-28
  • 录用日期:  2020-06-03
  • 网络出版日期:  2021-06-21
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回