Overview of the studies on the interactions between atmosphere, sea ice, and ocean in the Arctic Ocean and its climatic effects: contributions from Chinese scientists

Ruibo Lei Fanyi Zhang Qinghua Yang Ruonan Zhang Wenli Zhong Qi Shu Minghu Ding Fengming Hui Chao Min

Ruibo Lei, Fanyi Zhang, Qinghua Yang, Ruonan Zhang, Wenli Zhong, Qi Shu, Minghu Ding, Fengming Hui, Chao Min. Overview of the studies on the interactions between atmosphere, sea ice, and ocean in the Arctic Ocean and its climatic effects: contributions from Chinese scientists[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-020-0000-1
Citation: Ruibo Lei, Fanyi Zhang, Qinghua Yang, Ruonan Zhang, Wenli Zhong, Qi Shu, Minghu Ding, Fengming Hui, Chao Min. Overview of the studies on the interactions between atmosphere, sea ice, and ocean in the Arctic Ocean and its climatic effects: contributions from Chinese scientists[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-020-0000-1

doi: 10.1007/s13131-020-0000-1

Overview of the studies on the interactions between atmosphere, sea ice, and ocean in the Arctic Ocean and its climatic effects: contributions from Chinese scientists

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Trajectories of the ship north of 70° N during the first to thirteen CHINARE-Arctic cruises and the drifting trajectory of MOSAiC ice camp. Also shown are the ice concentration obtained on 17 September, 2023, with the annual minimum ice extent being observed, and the monthly averaged ice extent in September 1981–2010.

    Figure  2.  The ARVs (left), AUVs (middle), and buoys (right) deployed during the CHINARE-Arctic cruises

    Figure  3.  Deployment schematic diagram of the Unmanned Ice Station, which includes the units of meteorology, sea ice mass balance, sea ice optic, ocean fixed-layer measurement, and ocean profiler.

    Figure  4.  Drifting trajectories of the ice-tethered buoys deployed during the third to thirteen CHINARE-Arctic cruises and the MOSAiC expedition by the Chinese scientists.

    Figure  5.  Sea ice motion vector in the Arctic Ocean on April 19, 2019, and the ice age obtained in the week of April 16–22, 2019 (left); the lead distribution over the western Arctic Ocean on April 19, 2019 (right).

    Figure  6.  Arctic atmosphere-sea ice-ocean coupling system and the internal crucial interactions

    Figure  7.  Mechanism of the formation and maintenance of Arctic atmospheric inversion layer

    Figure  8.  Crucial thermodynamic and dynamic processes of Arctic sea ice and their coupling mechanisms.

    Figure  9.  Evolution of the large-scale circulation in the Arctic Ocean: (a) Early period with a limited BG and a large extent of sea ice versus (b) Later period with an expansion of BG and dramatic retreat of sea ice. The salinity profile sections were obtained from (a) the drifting profiling platform with the drifting along the BG during 1988, available from the World Ocean Database at https://www.ncei.noaa.gov/products/world-ocean-database, and (b) the D-TOP with the drifting along the TPD during 2020–2022.

    Figure  10.  Ocean temperature changes between 20812100 and 1981–2000 projected by CMIP6 climate models under high CO2 emission scenario: (a) upper 700-m ocean temperature changes, and (b) ocean temperature changes along the section of A–B (30°E–150°W).

    Figure  11.  Comparison of average sea ice thickness during late summer (September 16–30, 2016), based on (a) CryoSat-2, (b) Combined Model and Satellite Thickness (CMST), and (c) Analysis (ANA). The ANA estimates incorporate both sea ice thickness and concentration observations for assimilation, whereas CMST assimilates only sea ice concentration during the summer.

    Figure  12.  Projected fastest available trans-Arctic sea routes for (a) 2021–2040 and (b) 2061–2080 under the low-emission SSP1-2.6 scenario, based on 20-year daily averaged sea ice thickness and concentration data. Blue lines represent sea routes accessible for the open-water (OW) vessels, while red lines indicate routes for the vessels of Polar Class 6 (PC6). The color gradient and varying line width reflect the density (days per year) of overlapping routes at specific locations.

    Figure  13.  Sketch of the influence of Arctic Amplification and associated sea ice loss on the Northern Hemisphere mid-latitude winter weather and climate: with the AA, AO, NAO, and PDO denoting the Arctic Amplification, Arctic Oscillation, Northern Atlantic Oscillation, and Pacific Decadal Oscillation, respectively

  • Armitage T W K, Manucharyan G E, Petty A A, et al. 2020. Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss. Nature Communications, 11(1): 761, doi: 10.1038/s41467-020-14449-z
    Arndt S, Nicolaus M. 2014. Seasonal cycle and long-term trend of solar energy fluxes through Arctic sea ice. The Cryosphere, 8(6): 2219–2233, doi: 10.5194/tc-8-2219-2014
    Asbjørnsen H, Årthun M, Skagseth Ø, et al. 2020. Mechanisms underlying recent arctic atlantification. Geophysical Research Letters, 47(15): e2020GL088036, doi: 10.1029/2020GL088036
    Bacon S. 2023. Arctic sea ice, ocean, and climate evolution. Science, 381(6661): 946–947, doi: 10.1126/science.adj8469
    Bauer P, Sandu I, Magnusson L, et al. 2020. ECMWF global coupled atmosphere, ocean and sea-ice dataset for the year of polar prediction 2017–2020. Scientific Data, 7(1): 427, doi: 10.1038/s41597-020-00765-y
    Bi Haibo, Wang Yunhe, Liang Yu, et al. 2021. Influences of summertime Arctic Dipole atmospheric circulation on sea ice concentration variations in the Pacific sector of the Arctic during different pacific decadal oscillation phases. Journal of Climate, 34(8): 3003–3019, doi: 10.1175/JCLI-D-19-0843.1
    Bi Haibo, Yang Qinghua, Liang Xi, et al. 2019. Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean. The Cryosphere, 13(5): 1423–1439, doi: 10.5194/tc-13-1423-2019
    Bian Lingen, Ding Minghu, Lin Xiang, et al. 2016. Structure of summer atmospheric boundary layer in the center of Arctic Ocean and its relation with sea ice extent change. Science China Earth Sciences, 59(5): 1057–1065, doi: 10.1007/s11430-015-5238-8
    Bianco E, Iovino D, Masina S, et al. 2024. The role of upper-ocean heat content in the regional variability of Arctic sea ice at sub-seasonal timescales. The Cryosphere, 18(5): 2357–2379, doi: 10.5194/tc-18-2357-2024
    Blackport R, Screen J A, Van Der Wiel K, et al. 2019. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nature Climate Change, 9(9): 697–704, doi: 10.1038/s41558-019-0551-4
    Cai Qiongqiong, Beletsky D, Wang Jia, et al. 2021. Interannual and decadal variability of Arctic summer sea ice associated with atmospheric teleconnection patterns during 1850–2017. Journal of Climate, 34(24): 9931–9955, doi: 10.1175/JCLI-D-20-0330.1
    Cai Ziyi, You Qinglong, Chen Hans W, et al. 2024. Assessing arctic wetting: performances of CMIP6 models and projections of precipitation changes. Atmospheric Research, 297: 107124, doi: 10.1016/j.atmosres.2023.107124
    Cao Yunfeng, Liang Shunlin, Sun Laixiang, et al. 2022. Trans-Arctic shipping routes expanding faster than the model projections. Global Environmental Change, 73: 102488, doi: 10.1016/j.gloenvcha.2022.102488
    Chang Liang, Song Shuli, Feng Guiping, et al. 2024. Characteristics of the Arctic planetary boundary layer height from multiple radio occultations. IEEE Transactions on Geoscience and Remote Sensing, 62: 1–13, doi: 10.1109/TGRS.2023.3342193
    Chen Liqi. 2002. Study on the role of the arctic and antarctic regions in global change. Earth Science Frontiers (in Chinese), 9(2): 245–253
    Chen Jinlei, Kang Shichang, Chen Changsheng, et al. 2020. Changes in sea ice and future accessibility along the arctic northeast passage. Global and Planetary Change, 195: 103319, doi: 10.1016/j.gloplacha.2020.103319
    Chen Jinlei, Kang Shichang, Du Wentao, et al. 2021a. Perspectives on future sea ice and navigability in the arctic. The Cryosphere, 15(12): 5473–5482, doi: 10.5194/tc-15-5473-2021
    Chen Yin, Lei Ruibo, Zhao Xi, et al. 2023a. A new sea ice concentration product in the polar regions derived from the FengYun-3 MWRI sensors. Earth System Science Data, 15(7): 3223–3242, doi: 10.5194/essd-15-3223-2023
    Chen Xiaodan, Luo Dehai, Wu Yutian, et al. 2021b. Nonlinear response of atmospheric blocking to early winter Barents–Kara seas warming: an idealized model study. Journal of Climate, 34(6): 2367–2383, doi: 10.1175/JCLI-D-19-0720.1
    Chen Shiyi, Shokr M, Zhang Lu, et al. 2024a. Arctic wintertime sea ice lead detection from sentinel-1 SAR images. IEEE Transactions on Geoscience and Remote Sensing, 62: 4302419, doi: 10.1109/TGRS.2024.3444045
    Chen Xiaodan, Wen Zhiping, Liu Jiping, et al. 2024b. Sea-ice loss in Eurasian Arctic coast intensifies heavy Meiyu-Baiu rainfall associated with Indian Ocean warming. npj Climate and Atmospheric Science, 7(1): 217, doi: 10.1038/s41612-024-00770-7
    Chen Shangfeng, Wu Renguang. 2018. Impacts of early autumn arctic sea ice concentration on subsequent spring Eurasian surface air temperature variations. Climate Dynamics, 51(7): 2523–2542, doi: 10.1007/s00382-017-4026-x
    Chen Lanying, Wu Renhao, Shu Qi, et al. 2023b. The arctic sea ice thickness change in CMIP6’s historical simulations. Advances in Atmospheric Sciences, 40(12): 2331–2343, doi: 10.1007/s00376-022-1460-4
    Cheng Qing, Hao Weifeng, Ma Chao, et al. 2023. Daily arctic sea-ice albedo retrieval with a multiband reflectance iteration algorithm. IEEE Transactions on Geoscience and Remote Sensing, 61: 4302712, doi: 10.1109/TGRS.2023.3323506
    Cheng Maoce, Qiu Yubao, Yang Meng, et al. 2022. An analysis of the characteristics of precipitation in the northeast passage and its relationship with sea ice. Frontiers in Environmental Science, 10: 890787, doi: 10.3389/fenvs.2022.890787
    Christensen T R. 2014. Climate science: understand arctic methane variability. Nature, 509(7500): 279–281, doi: 10.1038/509279a
    Cohen J, Zhang X, Francis J, et al. 2020. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10(1): 20–29, doi: 10.1038/s41558-019-0662-y
    Dai Aiguo, Luo Dehai, Song Mirong, et al. 2019. Arctic amplification is caused by sea-ice loss under increasing CO2. Nature Communications, 10(1): 121, doi: 10.1038/s41467-018-07954-9
    Deser C, Tomas R, Alexander M, et al. 2010. The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. Journal of Climate, 23(2): 333–351, doi: 10.1175/2009JCLI3053.1
    Ding Shuoyi, Wu Bingyi, Chen Wen. 2021. Dominant characteristics of early autumn Arctic sea ice variability and its impact on winter Eurasian climate. Journal of Climate, 34(5): 1825–1846, doi: 10.1175/JCLI-D-19-0834.1
    Ding Shuoyi, Wu Bingyi, Chen Wen, et al. 2023. Possible linkage between winter extreme low temperature over western-central China and autumn sea ice loss. Journal of Geophysical Research: Atmospheres, 128(12): e2023JD038547, doi: 10.1029/2023JD038547
    Docquier D, Grist J P, Roberts M J, et al. 2019. Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport. Climate Dynamics, 53(7): 4989–5017, doi: 10.1007/s00382-019-04840-y
    Dong Zhaoqing, Shi Lijian, Lin Mingsen, et al. 2023. Feasibility of retrieving Arctic sea ice thickness from the Chinese HY-2B Ku-band radar altimeter. The Cryosphere, 17(3): 1389–1410, doi: 10.5194/tc-17-1389-2023
    Dou Tingfeng, Xiao Cunde, Liu Jiping, et al. 2021. Trends and spatial variation in rain-on-snow events over the Arctic Ocean during the early melt season. The Cryosphere, 15(2): 883–895, doi: 10.5194/tc-15-883-2021
    Fan Shuangshuang, Bose N, Liang Zeming. 2024. Polar AUV challenges and applications: a review. Drones, 8(8): 413, doi: 10.3390/drones8080413
    Fan Pei, Pang Xiaoping, Zhao Xi, et al. 2020. Sea ice surface temperature retrieval from Landsat 8/TIRS: evaluation of five methods against in situ temperature records and MODIS IST in arctic region. Remote Sensing of Environment, 248: 111975, doi: 10.1016/j.rse.2020.111975
    Feng Jiajun, Zhang Yuanzhi, Cheng Qiuming, et al. 2022. Pan-Arctic melt pond fraction trend, variability, and contribution to sea ice changes. Global and Planetary Change, 217: 103932, doi: 10.1016/j.gloplacha.2022.103932
    Gao Yizhou, Zhang Ruonan, Zuo Zhiyan, et al. 2024. Pacific decadal oscillation modulates the impacts of Bering sea ice loss on north American temperature. Geophysical Research Letters, 51(13): e2024GL109447, doi: 10.1029/2024GL109447
    Gascard J C, Vihma T, Döscher R. 2015. General introduction to the DAMOCLES special issue. Atmospheric Chemistry and Physics, 15(10): 5377–5379, doi: 10.5194/acp-15-5377-2015
    Gu Sen, Zhang Yang, Wu Qigang, et al. 2018. The linkage between arctic sea ice and midlatitude weather: in the perspective of energy. Journal of Geophysical Research: Atmospheres, 123(20): 11536–511550, doi: 10.1029/2018JD028743
    Gui Dawei, Lei Ruibo, Pang Xiaoping, et al. 2020. Validation of remote-sensing products of sea-ice motion: a case study in the western Arctic Ocean. Journal of Glaciology, 66(259): 807–821, doi: 10.1017/jog.2020.49
    Han Wei, Xiao Cunde, Dou Tingfeng, et al. 2018. Arctic has been going through a transition from solid precipitation to liquid precipitation in spring. Chinese Science Bulletin (in Chinese), 63(12): 1154–1162, doi: 10.1360/N972018-00088
    He Lian, Xue Binghua, Hui Fengming, et al. 2024. Toward daily snow depth estimation on Arctic sea ice during the whole winter season from passive microwave radiometer data. IEEE Transactions on Geoscience and Remote Sensing, 62: 4300615, doi: 10.1109/TGRS.2024.3358340
    He Xulong, Zhang Ruonan, Ding Shuoyi, et al. 2021. Interdecadal linkage between the winter northern hemisphere climate and arctic sea ice of diverse location and seasonality. Frontiers in Earth Science, 9: 758619, doi: 10.3389/feart.2021.758619
    He Xulong, Zhang Ruonan, Ding Shuoyi, et al. 2023. Decadal changes in the linkage between autumn sea ice and the winter Eurasian temperature in the 20th century. Geophysical Research Letters, 50(14): e2023GL103851, doi: 10.1029/2023GL103851
    Hjort J, Karjalainen O, Aalto J, et al. 2018. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications, 9(1): 5147, doi: 10.1038/s41467-018-07557-4
    Hoppmann M, Kuznetsov I, Fang Ying-Chih, et al. 2022. Mesoscale observations of temperature and salinity in the arctic transpolar drift: a high-resolution dataset from the MOSAiC distributed network. Earth System Science Data, 14(11): 4901–4921, doi: 10.5194/essd-14-4901-2022
    Huang Wenfeng, Lei Ruibo, Han Hongwei, et al. 2016a. Physical structures and interior melt of the central Arctic sea ice/snow in summer 2012. Cold Regions Science and Technology, 124: 127–137, doi: 10.1016/j.coldregions.2016.01.005
    Huang Wenfeng, Lu Peng, Lei Ruibo, et al. 2016b. Melt pond distribution and geometry in high Arctic sea ice derived from aerial investigations. Annals of Glaciology, 57(73): 105–118, doi: 10.1017/aog.2016.30
    Huang Yan, Ren Yibin, Li Xiaofeng. 2024. Deep learning techniques for enhanced sea-ice types classification in the Beaufort sea via SAR imagery. Remote Sensing of Environment, 308: 114204, doi: 10.1016/j.rse.2024.114204
    Jackson K, Wilkinson J, Maksym T, et al. 2013. A novel and low-cost sea ice mass balance buoy. Journal of Atmospheric and Oceanic Technology, 30(11): 2676–2688, doi: 10.1175/JTECH-D-13-00058.1
    Ji Qing, Li Bingjie, Pang Xiaoping, et al. 2021. Arctic sea ice density observation and its impact on sea ice thickness retrieval from CryoSat–2. Cold Regions Science and Technology, 181: 103177, doi: 10.1016/j.coldregions.2020.103177
    Krishfield R, Toole J, Proshutinsky A, et al. 2008. Automated ice-tethered profilers for seawater observations under pack ice in all seasons. Journal of Atmospheric and Oceanic Technology, 25(11): 2091–2105, doi: 10.1175/2008JTECHO587.1
    Kug J S, Jeong J H, Jang Y S, et al. 2015. Two distinct influences of arctic warming on cold winters over North America and East Asia. Nature Geoscience, 8(10): 759–762, doi: 10.1038/ngeo2517
    Landy J C, Dawson G J, Tsamados M, et al. 2022. A year-round satellite sea-ice thickness record from CryoSat-2. Nature, 609(7927): 517–522, doi: 10.1038/s41586-022-05058-5
    Lei Ruibo, Cheng Bin, Heil Petra, et al. 2018. Seasonal and interannual variations of sea ice mass balance from the central arctic to the Greenland Sea. Journal of Geophysical Research: Oceans, 123(4): 2422–2439, doi: 10.1002/2017JC013548
    Lei Ruibo, Cheng Bin, Hoppmann M, et al. 2022. Seasonality and timing of sea ice mass balance and heat fluxes in the arctic transpolar drift during 2019–2020. Elementa: Science of the Anthropocene, 10(1): 000089, doi: 10.1525/elementa.2021.000089
    Lei Ruibo, Gui Dawei, Heil Petra, et al. 2020a. Comparisons of sea ice motion and deformation, and their responses to ice conditions and cyclonic activity in the western Arctic Ocean between two summers. Cold Regions Science and Technology, 170: 102925, doi: 10.1016/j.coldregions.2019.102925
    Lei Ruibo, Gui Dawei, Hutchings J K, et al. 2020b. Annual cycles of sea ice motion and deformation derived from buoy measurements in the western Arctic Ocean over two ice seasons. Journal of Geophysical Research: Oceans, 125(6): e2019JC015310, doi: 10.1029/2019JC015310
    Lei Ruibo, Gui Dawei, Yuan Zhouli, et al. 2020c. Characterization of the unprecedented polynya events north of Greenland in 2017/2018 using remote sensing and reanalysis data. Acta Oceanologica Sinica, 39(9): 5–17, doi: 10.1007/s13131-020-1643-8
    Lei Ruibo, Hongjie Xie, Jia Wang, et al. 2015. Changes in sea ice conditions along the Arctic northeast passage from 1979 to 2012. Cold Regions Science and Technology, 119: 132–144, doi: 10.1016/j.coldregions.2015.08.004
    Lei Ruibo, Hoppmann M, Cheng Bing, et al. 2021. Seasonal changes in sea ice kinematics and deformation in the Pacific sector of the Arctic Ocean in 2018/19. The Cryosphere, 15(3): 1321–1341, doi: 10.5194/tc-15-1321-2021
    Lei Ruibo, Li Na, Heil P, et al. 2014. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean. Journal of Geophysical Research: Oceans, 119(1): 537–547, doi: 10.1002/2012JC008731
    Lei Ruibo, Tian-Kunze Xiangshan, Leppäranta Matti, et al. 2016. Changes in summer sea ice, albedo, and portioning of surface solar radiation in the pacific sector of Arctic Ocean during 1982–2009. Journal of Geophysical Research: Oceans, 121(8): 5470–5486, doi: 10.1002/2016JC011831
    Lei Ruibo, Wei Zexun. 2020. Exploring the Arctic Ocean under arctic amplification. Acta Oceanologica Sinica, 39(9): 1–4, doi: 10.1007/s13131-020-1642-9
    Lei Ruibo, Zhang Zhanhai, Li Zhijun, et al. 2017. Review of research on Arctic sea ice physics based on the Chinese national arctic research expedition. Advances in Polar Science, 28(2): 100–110, doi: 10.13679/j.advps.2017.2.00100
    Lei Ruibo, Zhang Zhanhai, Matero I, et al. 2012. Reflection and transmission of irradiance by snow and sea ice in the central Arctic Ocean in summer 2010. Polar Research, 31(1): 17325, doi: 10.3402/polar.v31i0.17325
    Leng Hengling, Spall M A, Bai Xuezhi. 2022. Temporal evolution of a geostrophic current under sea ice: analytical and numerical solutions. Journal of Physical Oceanography, 52(6): 1191–1204, doi: 10.1175/JPO-D-21-0242.1
    Li Xichen, Chen Xianyao, Wu Bingyi, et al. 2023. China’s recent progresses in polar climate change and its interactions with the global climate system. Advances in Atmospheric Sciences, 40(8): 1401–1428, doi: 10.1007/s00376-023-2323-3
    Li Mengmeng, Ke Changqing, Shen Xiaoyi, et al. 2021. Investigation of the Arctic sea ice volume from 2002 to 2018 using multi-source data. International Journal of Climatology, 41(4): 2509–2527, doi: 10.1002/joc.6972
    Li Haili, Ke Changqing, Shen Xiaoyi, et al. 2024. The varied role of atmospheric rivers in Arctic snow depth variations. Geophysical Research Letters, 51(14): e2024GL110163, doi: 10.1029/2024GL110163
    Li Mengmeng, Ke Changqing, Xie Hongjie, et al. 2020a. Arctic sea ice thickness retrievals from CryoSat-2: seasonal and interannual comparisons of three different products. International Journal of Remote Sensing, 41(1): 152–170, doi: 10.1080/01431161.2019.1637961
    Li Haili, Ke Changqing, Zhu Qinghui, et al. 2022a. A deep learning approach to retrieve cold-season snow depth over Arctic sea ice from AMSR2 measurements. Remote Sensing of Environment, 269: 112840, doi: 10.1016/j.rse.2021.112840
    Li Jianqiang, Pickart R S, Lin Peigen, et al. 2020b. The Atlantic water boundary current in the Chukchi borderland and southern Canada Basin. Journal of Geophysical Research: Oceans, 125(8): e2020JC016197, doi: 10.1029/2020JC016197
    Li Min, Pickart R S, Spall M A, et al. 2019. Circulation of the Chukchi Sea shelfbreak and slope from moored timeseries. Progress in Oceanography, 172: 14–33, doi: 10.1016/j.pocean.2019.01.002
    Li Xiaoming, Qiu Yujia, Wang Yacheng, et al. 2022b. Light from space illuminating the polar silk road. International Journal of Digital Earth, 15(1): 2028–2046, doi: 10.1080/17538947.2022.2139865
    Li Xuewei, Yang Qinghua, Yu Lejiang, et al. 2022c. Unprecedented Arctic sea ice thickness loss and multiyear-ice volume export through Fram strait during 2010–2011. Environmental Research Letters, 17(9): 095008, doi: 10.1088/1748-9326/ac8be7
    Li Shuo, Zeng Junbao, Wang Yuechao. 2011. Navigation under the Arctic ice by autonomous & remotely operated underwater vehicle. Robot (in Chinese), 33(4): 509–512, doi: 10.3724/SP.J.1218.2011.00509
    Liang Yu, Bi Haibo, Huang Haijun, et al. 2022. Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020. The Cryosphere, 16(3): 1107–1123, doi: 10.5194/tc-16-1107-2022
    Liang Yu, Bi Haibo, Lei Ruibo, et al. 2023. Atmospheric latent energy transport pathways into the Arctic and their connections to sea ice loss during winter over the observational period. Journal of Climate, 36(19): 6695–6712, doi: 10.1175/JCLI-D-22-0789.1
    Liang Xi, Losch M, Nerger L, et al. 2019. Using sea surface temperature observations to constrain upper ocean properties in an Arctic sea ice-ocean data assimilation system. Journal of Geophysical Research: Oceans, 124(7): 4727–4743, doi: 10.1029/2019JC015073
    Liang Hongjie, Su Jie. 2021. Variability in sea ice melt onset in the Arctic northeast passage: seesaw of the Laptev Sea and the East Siberian Sea. Journal of Geophysical Research: Oceans, 126(10): e2020JC016985, doi: 10.1029/2020JC016985
    Light B, Maykut G A, Grenfell T C. 2004. A temperature-dependent, structural-optical model of first-year sea ice. Journal of Geophysical Research: Oceans, 109(C6): C06013, doi: 10.1029/2003JC002164
    Lin Long, Lei Ruibo, Hoppmann M, et al. 2022. Changes in the annual sea ice freeze–thaw cycle in the Arctic Ocean from 2001 to 2018. The Cryosphere, 16(12): 4779–4796, doi: 10.5194/tc-16-4779-2022
    Lin Peigen, Pickart R S, Heorton H, et al. 2023. Recent state transition of the Arctic Ocean’s Beaufort Gyre. Nature Geoscience, 16(6): 485–491, doi: 10.1038/s41561-023-01184-5
    Liu Jiping, Curry J A, Wang Huijun, et al. 2012. Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109(11): 4074–4079, doi: 10.1073/pnas.1114910109
    Liu Xiaomin, Feng Tiantian, Yang Yushi, et al. 2024a. Characterization of north Greenland polynyas with super-resolved passive microwave sea ice concentration. GIScience & Remote Sensing, 61(1): 2300222, doi: 10.1080/15481603.2023.2300222
    Liu Yihan, Luo Hao, Min Chao, et al. 2024b. Changes in the Arctic traffic occupancy and their connection to sea ice conditions from 2015 to 2020. Remote Sensing, 16(7): 1157., doi: 10.3390/rs16071157
    Liu Zhongfang, Risi C, Codron F, et al. 2021. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern. Nature Communications, 12(1): 1519, doi: 10.1038/s41467-021-21830-z
    Liu Zhongfang, Risi C, Codron F, et al. 2022. Atmospheric forcing dominates winter Barents-Kara sea ice variability on interannual to decadal time scales. Proceedings of the National Academy of Sciences of the United States of America, 119(36): e2120770119, doi: 10.1073/pnas.2120770119
    Liu Anling, Yang Jing, Bao Qing, et al. 2023a. Subseasonal-to-seasonal prediction of arctic sea ice using a fully coupled dynamical ensemble forecast system. Atmospheric Research, 295: 107014, doi: 10.1016/j.atmosres.2023.107014
    Liu Changwei, Yang Qinghua, Gao Zhongming, et al. 2024c. The role of non-local effects on surface sensible heat flux under different types of thermal structures over the Arctic sea-ice surface. Geophysical Research Letters, 51: e2023GL106753, doi: 10.1029/2023GL106753
    Liu Changwei, Yang Qinghua, Shupe M D, et al. 2023b. Atmospheric turbulent intermittency over the Arctic sea-ice surface during the MOSAiC expedition. Journal of Geophysical Research: Atmospheres, 128(15): e2023JD038639, doi: 10.1029/2023JD038639
    Lu Yuanzheng, Guo Shuangxi, Zhou Shengqi, et al. 2022. Identification of thermohaline sheet and its spatial structure in the Canada Basin. Journal of Physical Oceanography, 52(11): 2773–2787, doi: 10.1175/JPO-D-22-0012.1
    Lu Peng, Leppäranta M, Cheng Bin, et al. 2016. Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance. Cold Regions Science and Technology, 124: 1–10, doi: 10.1016/j.coldregions.2015.12.010
    Lu Peng, Leppäranta M, Cheng Bin, et al. 2018. The color of melt ponds on Arctic sea ice. The Cryosphere, 12(4): 1331–1345, doi: 10.5194/tc-12-1331-2018
    Lu Peng, Li Zhijun, Cheng Bin, et al. 2010. Sea ice surface features in Arctic summer 2008: aerial observations. Remote Sensing of Environment, 114(4): 693–699, doi: 10.1016/j.rse.2009.11.009
    Lu Dunwang, Liu Jianqiang, Shi Lijian, et al. 2024. Retrieval of sea ice drift in the Fram strait based on data from Chinese satellite HaiYang (HY-1D). The Cryosphere, 18(3): 1419–1441, doi: 10.5194/tc-18-1419-2024
    Luo Dehai, Chen Xiaodan, Overland J, et al. 2019. Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes. Journal of Climate, 32(14): 4235–4261, doi: 10.1175/JCLI-D-18-0449.1
    Luo Xiaofan, Dong Chunming, Wei Hao, et al. 2024a. Modeling the responses of phytoplankton assemblage and biological pump efficiency to environmental changes in the Chukchi borderland, western Arctic Ocean. Journal of Geophysical Research: Oceans, 129(8): e2023JC020780, doi: 10.1029/2023JC020780
    Luo Binhe, Luo Dehai, Dai Aiguo, et al. 2024b. Rapid summer Russian Arctic sea-ice loss enhances the risk of recent Eastern Siberian wildfires. Nature Communications, 15(1): 5399, doi: 10.1038/s41467-024-49677-0
    Luo Xiaofan, Wang Yali, Lu Youyu, et al. 2020. A 4-month lead predictor of open-water onset in Bering strait. Geophysical Research Letters, 47(17): e2020GL089573, doi: 10.1029/2020GL089573
    Luo Dehai, Xiao Yiqing, Yao Yao, et al. 2016. Impact of Ural blocking on winter warm Arctic–Cold Eurasian anomalies. Part I: blocking-induced amplification. Journal of Climate, 29(11): 3925–3947, doi: 10.1175/JCLI-D-15-0611.1
    Luo Dehai, Yao Yao, Dai Aiguo, et al. 2017. Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part II: a theoretical explanation. Journal of Climate, 30(10): 3569–3587, doi: 10.1175/JCLI-D-16-0262.1
    Lyu Guokun, Koehl A, Serra N, et al. 2021. Arctic Ocean–sea ice reanalysis for the period 2007–2016 using the adjoint method. Quarterly Journal of the Royal Meteorological Society, 147(736): 1908–1929, doi: 10.1002/qj.4002
    Lyu Guokun, Koehl A, Wu Xinrong, et al. 2023. Effects of including the adjoint sea ice rheology on estimating Arctic Ocean–sea ice state. Ocean Science, 19(2): 305–319, doi: 10.5194/os-19-305-2023
    Ma Xuan, Wang Lei, Smith Doug, et al. 2022. ENSO and QBO modulation of the relationship between Arctic sea ice loss and Eurasian winter climate. Environmental Research Letters, 17(12): 124016, doi: 10.1088/1748-9326/aca4e9
    Manucharyan G E, Spall M A. 2016. Wind-driven freshwater buildup and release in the Beaufort gyre constrained by mesoscale eddies. Geophysical Research Letters, 43(1): 273–282, doi: 10.1002/2015GL065957
    Manucharyan G E, Thompson A F. 2022. Heavy footprints of upper-ocean eddies on weakened Arctic sea ice in marginal ice zones. Nature Communications, 13(1): 2147, doi: 10.1038/s41467-022-29663-0
    Min Chao, Yang Qinghua, Chen Dake, et al. 2022. The emerging Arctic shipping corridors. Geophysical Research Letters, 49(10): e2022GL099157, doi: 10.1029/2022GL099157
    Min Chao, Yang Qinghua, Luo Hao, et al. 2023a. Improving Arctic sea-ice thickness estimates with the assimilation of CryoSat-2 summer observations. Ocean-Land-Atmosphere Research, 2: 0025, doi: 10.34133/olar.0025
    Min Chao, Zhou Xiangying, Luo Hao, et al. 2023b. Toward quantifying the increasing accessibility of the Arctic northeast passage in the past four decades. Advances in Atmospheric Sciences, 40(12): 2378–2390, doi: 10.1007/s00376-022-2040-3
    Mori M, Watanabe M, Shiogama H, et al. 2014. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7(12): 869–873, doi: 10.1038/ngeo2277
    Mu Longjiang, Liang Xi, Yang Qinghua, et al. 2019. Arctic ice ocean prediction system: evaluating sea-ice forecasts during Xuelong’s first trans-Arctic passage in summer 2017. Journal of Glaciology, 65(253): 813–821, doi: 10.1017/jog.2019.55
    Mu Longjiang, Losch M, Yang Qinghua, et al. 2018a. Arctic-wide sea ice thickness estimates from combining satellite remote sensing data and a dynamic ice-ocean model with data assimilation during the CryoSat-2 period. Journal of Geophysical Research: Oceans, 123(11): 7763–7780, doi: 10.1029/2018JC014316
    Mu Longjiang, Yang Qinghua, Losch M, et al. 2018b. Improving sea ice thickness estimates by assimilating CryoSat-2 and SMOS sea ice thickness data simultaneously. Quarterly Journal of the Royal Meteorological Society, 144(711): 529–538, doi: 10.1002/qj.3225
    Nicolaus M, Hoppmann M, Arndt S, et al. 2021. Snow depth and air temperature seasonality on sea ice derived from snow buoy measurements. Frontiers in Marine Science, 8: 655446, doi: 10.3389/fmars.2021.655446
    Ning Chenhui, Xu Shiming, Zhang Yan, et al. 2024. Lagrangian tracking of sea ice in Community Ice CodE (CICE; version 5). Geoscientific Model Development, 17(17): 6847–6866, doi: 10.5194/gmd-17-6847-2024
    Osborne J M, Screen J A, Collins M. 2017. Ocean–atmosphere state dependence of the atmospheric response to Arctic sea ice loss. Journal of Climate, 30(5): 1537–1552, doi: 10.1175/JCLI-D-16-0531.1
    Pan Rongrong, Shu Qi, Song Zhenya, et al. 2023a. Simulations and projections of winter sea ice in the Barents Sea by CMIP6 climate models. Advances in Atmospheric Sciences, 40(8): 2318–2330, doi: 10.1007/s00376-023-2235-2
    Pan Rongrong, Shu Qi, Wang Qiang, et al. 2023b. Future Arctic climate change in CMIP6 strikingly intensified by NEMO-family climate models. Geophysical Research Letters, 50(4): e2022GL102077, doi: 10.1029/2022GL102077
    Peng Haitao, Ke Changqing, Shen Xiaoyi, et al. 2020. Summer albedo variations in the Arctic Sea ice region from 1982 to 2015. International Journal of Climatology, 40(6): 3008–3020, doi: 10.1002/joc.6379
    Peng Shijie, Yang Qinghua, Shupe M D, et al. 2023. The characteristics of atmospheric boundary layer height over the Arctic Ocean during MOSAiC. Atmospheric Chemistry and Physics, 23(15): 8683–8703, doi: 10.5194/acp-23-8683-2023
    Planck C J, Whitlock J, Polashenski C, et al. 2019. The evolution of the seasonal ice mass balance buoy. Cold Regions Science and Technology, 165: 102792, doi: 10.1016/j.coldregions.2019.102792
    Polyakov I V, Alkire M B, Bluhm B A, et al. 2020. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Frontiers in Marine Science, 7: 516272, doi: 10.3389/fmars.2020.00491
    Polyakov I V, Ingvaldsen R B, Pnyushkov A V, et al. 2023. Fluctuating Atlantic inflows modulate Arctic atlantification. Science, 381(6661): 972–979, doi: 10.1126/science.adh5158
    Polyakov I V, Pnyushkov A V, Alkire M B, et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, 356(6335): 285–291, doi: 10.1126/science.aai8204
    Previdi M, Smith K L, Polvani L M. 2021. Arctic amplification of climate change: a review of underlying mechanisms. Environmental Research Letters, 16(9): 093003, doi: 10.1088/1748-9326/ac1c29
    Proshutinsky A, Krishfield R, Toole J M, et al. 2019. Analysis of the Beaufort gyre freshwater content in 2003–2018. Journal of Geophysical Research: Oceans, 124(12): 9658–9689, doi: 10.1029/2019JC015281
    Provost C, Pelon J, Sennéchael N, et al. 2015. IAOOS (Ice - Atmosphere - Arctic Ocean Observing System, 2011–2019). Mercator Ocean Quarterly Newsletter, 13–15 (查阅网上资料, 未找到本条文献信息, 请确认)
    Qiu Yujia, Li Xiaoming, Guo Huadong. 2023. Spaceborne thermal infrared observations of Arctic sea ice leads at 30 m resolution. The Cryosphere, 17(7): 2829–2849, doi: 10.5194/tc-17-2829-2023
    Qu Meng, Lei Ruibo, Liu Yue, et al. 2024. Arctic sea ice leads detected using sentinel-1B SAR image and their responses to atmosphere circulation and sea ice dynamics. Remote Sensing of Environment, 308: 114193, doi: 10.1016/j.rse.2024.114193
    Qu Meng, Pang Xiaoping, Zhao Xi, et al. 2019. Estimation of turbulent heat flux over leads using satellite thermal images. The Cryosphere, 13(6): 1565–1582, doi: 10.5194/tc-13-1565-2019
    Qu Meng, Pang Xiaoping, Zhao Xi, et al. 2021. Spring leads in the Beaufort Sea and its interannual trend using Terra/MODIS thermal imagery. Remote Sensing of Environment, 256: 112342, doi: 10.1016/j.rse.2021.112342
    Qu Zhifeng, Su Jie. 2023. Improved algorithm for determining the freeze onset of Arctic sea ice using AMSR-E/2 data. Remote Sensing of Environment, 297: 113748, doi: 10.1016/j.rse.2023.113748
    Rabe B, Cox C J, Fang Ying-Chih, et al. 2024. The MOSAiC distributed network: observing the coupled Arctic system with multidisciplinary, coordinated platforms. Elementa: Science of the Anthropocene, 12(1): 00103, doi: 10.1525/elementa.2023.00103
    Ren Shihe, Liang Xi, Sun Qizhen, et al. 2021. A fully coupled Arctic sea-ice–ocean–atmosphere model (ArcIOAM v1.0) based on C-Coupler2: model description and preliminary results. Geoscientific Model Development, 14(2): 1101–1124, doi: 10.5194/gmd-14-1101-2021
    Ren Haiyi, Shokr M, Li Xinqing, et al. 2022. Estimation of sea ice production in the north water polynya based on ice arch duration in winter during 2006–2019. Journal of Geophysical Research: Oceans, 127(10): e2022JC018764, doi: 10.1029/2022JC018764
    Richter-Menge J, Perovich D K, Elder B C, et al. 2006. Ice mass-balance buoys: a tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover. Annals of Glaciology, 44: 205–210, doi: 10.3189/172756406781811727
    Rigor I G, Wallace J M. 2004. Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophysical Research Letters, 31(9): L09401, doi: 10.1029/2004GL019492
    Rudels B, Korhonen M, Schauer U, et al. 2015. Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram strait inflow branch to the Arctic Ocean heat budget. Progress in Oceanography, 132: 128–152, doi: 10.1016/j.pocean.2014.04.003
    Schauer U, Fahrbach E, Osterhus S, et al. 2004. Arctic warming through the Fram strait: oceanic heat transport from 3 years of measurements. Journal of Geophysical Research: Oceans, 109(C6): C06026, doi: 10.1029/2003JC001823
    Shen Zili, Duan Anmin, Li Dongliang, et al. 2021. Assessment and ranking of climate models in Arctic sea ice cover simulation: from CMIP5 to CMIP6. Journal of Climate, 34(9): 3609–3627, doi: 10.1175/JCLI-D-20-0294.1
    Shen Zili, Zhou Wen, Li Jinxiao, et al. 2023. A frequent ice-free Arctic is likely to occur before the mid-21st century. npj Climate and Atmospheric Science, 6(1): 103, doi: 10.1038/s41612-023-00431-1
    Shi Xiaoxu, Notz D, Liu Jiping, et al. 2021. Sensitivity of northern Hemisphere climate to ice–ocean interface heat flux parameterizations. Geoscientific Model Development, 14(8): 4891–4908, doi: 10.5194/gmd-14-4891-2021
    Shokr M, Ye Yufang. 2023. Why does Arctic sea ice respond more evidently than Antarctic sea ice to climate change? Ocean-Land-Atmosphere Research, 2: 0006, doi: 10.34133/olar.0006
    Shu Qi, Qiao Fangli, Liu Jiping, et al. 2021. Arctic sea ice concentration and thickness data assimilation in the FIO-ESM climate forecast system. Acta Oceanologica Sinica, 40(10): 65–75, doi: 10.1007/s13131-021-1768-4
    Shu Qi, Qiao Fangli, Liu Jiping, et al. 2024. Description of FIO-ESM version 2.1 and evaluation of its sea ice simulations. Ocean Modelling, 187: 102308, doi: 10.1016/j.ocemod.2023.102308
    Shu Qi, Qiao Fangli, Song Zhenya, et al. 2017. Effect of increasing Arctic river runoff on the Atlantic meridional overturning circulation: a model study. Acta Oceanologica Sinica, 36(8): 59–65, doi: 10.1007/s13131-017-1009-z
    Shu Qi, Qiao Fangli, Song Zhenya, et al. 2018. Projected freshening of the Arctic Ocean in the 21st century. Journal of Geophysical Research: Oceans, 123(12): 9232–9244, doi: 10.1029/2018JC014036
    Shu Qi, Wang Qiang, Årthun M, et al. 2022. Arctic Ocean amplification in a warming climate in CMIP6 models. Science Advances, 8(30): eabn9755, doi: 10.1126/sciadv.abn9755
    Shu Qi, Wang Qiang, Guo Chuncheng, et al. 2023. Arctic Ocean simulations in the CMIP6 ocean model intercomparison project (OMIP). Geoscientific Model Development, 16(9): 2539–2563, doi: 10.5194/gmd-16-2539-2023
    Shu Qi, Wang Qiang, Song Zhenya, et al. 2020. Assessment of sea ice extent in CMIP6 with comparison to observations and CMIP5. Geophysical Research Letters, 47(9): e2020GL087965, doi: 10.1029/2020GL087965
    Shupe M D, Rex M. 2022. A year in the changing Arctic sea ice. Oceanography, 35(3-4): 224–225, doi: 10.5670/oceanog.2022.126
    Smedsrud L H, Ingvaldsen R, Nilsen J E Ø, et al. 2010. Heat in the Barents Sea: transport, storage, and surface fluxes. Ocean Science, 6(1): 219–234, doi: 10.5194/os-6-219-2010
    Solan M, Archambault P, Renaud P E, et al. 2020. The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2181): 20200266, doi: 10.1098/rsta.2020.0266
    Song Ruizhe, Mu Longjiang, Loza S N, et al. 2024. Assimilating summer sea-ice thickness observations improves Arctic sea-ice forecast. Geophysical Research Letters, 51(13): e2024GL110405, doi: 10.1029/2024GL110405
    Sumata H, De Steur L, Divine D V, et al. 2023. Regime shift in Arctic Ocean sea ice thickness. Nature, 615(7952): 443–449, doi: 10.1038/s41586-022-05686-x
    Tang Qiuhong, Zhang Xuejun, Francis J A. 2014. Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nature Climate Change, 4(1): 45–50, doi: 10.1038/nclimate2065
    Tian Wenshou, Huang Jinlong, Zhang Jiankai, et al. 2023. Role of stratospheric processes in climate change: advances and challenges. Advances in Atmospheric Sciences, 40(8): 1379–1400, doi: 10.1007/s00376-023-2341-1
    Tian Zhongxiang, Zhang Dongqi, Song Xiaojiang, et al. 2020. Characteristics of the atmospheric vertical structure with different sea ice covers over the Pacific sector of the Arctic Ocean in summer. Atmospheric Research, 245: 105074, doi: 10.1016/j.atmosres.2020.105074
    Timco G W, Weeks W F. 2010. A review of the engineering properties of sea ice. Cold Regions Science and Technology, 60(2): 107–129, doi: 10.1016/j.coldregions.2009.10.003
    Timmermans M L E, Pickart R S. 2023. The Arctic Ocean’s changing Beaufort Gyre system: an assessment of current understanding, open questions and future research directions. Bulletin of the American Meteorological Society, 104(7): E1282–E1289, doi: 10.1175/BAMS-D-23-0129.1
    Tschudi M A, Meier W N, Stewart J S. 2020. An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). The Cryosphere, 14(5): 1519–1536, doi: 10.5194/tc-14-1519-2020
    Ungermann M, Tremblay L B, Martin T, et al. 2017. Impact of the ice strength formulation on the performance of a sea ice thickness distribution model in the Arctic. Journal of Geophysical Research: Oceans, 122(3): 2090–2107, doi: 10.1002/2016JC012128
    Vancoppenolle M, Madec G, Thomas M, et al. 2019. Thermodynamics of sea ice phase composition revisited. Journal of Geophysical Research: Oceans, 124(1): 615–634, doi: 10.1029/2018JC014611
    Wang Xue, Chen Zhuoqi, Xu Zhizhuo, et al. 2024a. A framework for fine-resolution and spatially continuous Arctic sea ice drift retrieval using multisensor data. IEEE Transactions on Geoscience and Remote Sensing, 62: 4301418, doi: 10.1109/TGRS.2024.3394882
    Wang Qiang, Danilov S, Jung T. 2024b. Arctic freshwater anomaly transiting to the North Atlantic delayed within a buffer zone. Nature Geoscience, 17(12): 1218–1221, doi: 10.1038/s41561-024-01592-1
    Wang Caixin, Granskog M A, Gerland S, et al. 2014. Autonomous observations of solar energy partitioning in first-year sea ice in the Arctic Basin. Journal of Geophysical Research: Oceans, 119(3): 2066–2080, doi: 10.1002/2013JC009459
    Wang Ding, Guo Jianping, Chen Aijun, et al. 2020a. Temperature inversion and clouds over the Arctic Ocean observed by the 5th Chinese National Arctic Research Expedition. Journal of Geophysical Research: Atmospheres, 125(13): e2019JD032136, doi: 10.1029/2019JD032136
    Wang Yiran, Li Xiaoming. 2021. Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning. Earth System Science Data, 13(6): 2723–2742, doi: 10.5194/essd-13-2723-2021
    Wang Qingkai, Li Zhijun, Lei Ruibo, et al. 2018. Estimation of the uniaxial compressive strength of Arctic sea ice during melt season. Cold Regions Science and Technology, 151: 9–18, doi: 10.1016/j.coldregions.2018.03.002
    Wang Qingkai, Lu Peng, Leppäranta M, et al. 2020b. Physical properties of summer sea ice in the Pacific sector of the Arctic during 2008–2018. Journal of Geophysical Research: Oceans, 125(9): e2020JC016371, doi: 10.1029/2020JC016371
    Wang Qingmin, Shokr M, Chen Shiyi, et al. 2022a. Winter sea-ice lead detection in Arctic using FY-3D MERSI-II data. IEEE Geoscience and Remote Sensing Letters, 19: 7005105, doi: 10.1109/LGRS.2022.3223689
    Wang Qiang, Shu Qi, Wang Shizhu, et al. 2023. A review of Arctic–subarctic ocean linkages: past changes, mechanisms, and future projections. Ocean-Land-Atmosphere Research, 2: 0013, doi: 10.34133/olar.0013
    Wang Mingfeng, Su Jie, Landy J, et al. 2020c. A new algorithm for sea ice melt pond fraction estimation from high-resolution optical satellite imagery. Journal of Geophysical Research: Oceans, 125(10): e2019JC015716, doi: 10.1029/2019JC015716
    Wang Shizhu, Wang Qiang, Wang Muyin, et al. 2022b. Arctic Ocean freshwater in CMIP6 coupled models. Earth’s Future, 10(9): e2022EF002878, doi: 10.1029/2022EF002878
    Wang Qiang, Wang Xuezhu, Wekerle C, et al. 2019. Ocean heat transport into the Barents Sea: distinct controls on the upward trend and interannual variability. Geophysical Research Letters, 46(22): 13180–13190, doi: 10.1029/2019GL083837
    Wang Qiang, Wekerle C, Wang Xuezhu, et al. 2020d. Intensification of the Atlantic water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline. Geophysical Research Letters, 47(3): e2019GL086682, doi: 10.1029/2019GL086682
    Wang Yuxin, Wu Bingyi. 2024. Dominant features of phasic evolutions in the winter Arctic-midlatitude linkage since 1979. Environmental Research Letters, 19(10): 104037, doi: 10.1088/1748-9326/ad7476
    Wang Xiaoyu, Zhao Jinping, Lobanov V B, et al. 2021. Distribution and transport of water masses in the East Siberian Sea and their impacts on the Arctic halocline. Journal of Geophysical Research: Oceans, 126(8): e2020JC016523, doi: 10.1029/2020JC016523
    Webster M, Gerland S, Holland M, et al. 2018. Snow in the changing sea-ice systems. Nature Climate Change, 8(11): 946–953, doi: 10.1038/s41558-018-0286-7
    Wei Ting, Yan Qing, Qi Wei, et al. 2020. Projections of Arctic sea ice conditions and shipping routes in the twenty-first century using CMIP6 forcing scenarios. Environmental Research Letters, 15(10): 104079, doi: 10.1088/1748-9326/abb2c8
    Wilson J, Jung T, Bazile E, et al. 2023. The YOPP final summit: assessing past and forecasting future polar prediction research. Bulletin of the American Meteorological Society, 104(3): E660–E665, doi: 10.1175/BAMS-D-22-0282.1
    Wu Bingyi. 2024. Recent progresses in the study of the Arctic–midlatitude connection and its association with Arctic sea ice loss. Chinese Journal of Atmospheric Sciences (in Chinese), 48(1): 108–120, doi: 10.3878/j.issn.1006-9895.2309.23305
    Wu Bingyi, Francis J A. 2019. Summer Arctic cold anomaly dynamically linked to east Asian heat waves. Journal of Climate, 32(4): 1137–1150, doi: 10.1175/JCLI-D-18-0370.1
    Wu Bingyi, Li Zhenkun. 2022. Possible impacts of anomalous Arctic sea ice melting on summer atmosphere. International Journal of Climatology, 42(3): 1818–1827, doi: 10.1002/joc.7337
    Wu Ke, Li Xiaoming, Huang Bingqing. 2021. Retrieval of ocean wave heights from spaceborne SAR in the Arctic Ocean with a neural network. Journal of Geophysical Research: Oceans, 126(3): e2020JC016946, doi: 10.1029/2020JC016946
    Wu Fengmin, Li Wenkai, Li Wei. 2019. Causes of Arctic Amplification: a review. Advances in Earth Science, 34(3): 232–242, doi: 10.11867/j.issn.1001-8166.2019.03.0232
    Wu Bingyi, Su Jingzhi, Zhang Renhe. 2011. Effects of autumn-winter Arctic sea ice on winter Siberian High. Chinese Science Bulletin, 56(30): 3220–3228, doi: 10.1007/s11434-011-4696-4
    Xie Hongjie, Lei Ruibo, Ke Changqing, et al. 2013. Summer sea ice characteristics and morphology in the Pacific Arctic sector as observed during the CHINARE 2010 cruise. The Cryosphere, 7(4): 1057–1072, doi: 10.5194/tc-7-1057-2013
    Xiu Yongwu, Luo Hao, Yang Qinghua, et al. 2022. The challenge of Arctic sea ice thickness prediction by ECMWF on subseasonal time scales. Geophysical Research Letters, 49(8): e2021GL097476, doi: 10.1029/2021GL097476
    Xu Xinping, He Shengping, Gao Yongqi, et al. 2019. Strengthened linkage between midlatitudes and Arctic in boreal winter. Climate Dynamics, 53(7): 3971–3983, doi: 10.1007/s00382-019-04764-7
    Xu Shiming, Ma Jialiang, Zhou Lu, et al. 2021. Comparison of sea ice kinematics at different resolutions modeled with a grid hierarchy in the community earth system model (version 1.2. 1). Geoscientific Model Development, 14(1): 603–628, doi: 10.5194/gmd-14-603-2021
    Yang Diyi, Ding Minghu, Dou Tingfeng, et al. 2021. On the differences in precipitation type between the Arctic, Antarctica and Tibetan Plateau. Frontiers in Earth Science, 9: 607487, doi: 10.3389/feart.2021.607487
    Yang Chaoyuan, Liu Jiping, Chen Dake. 2022. An improved regional coupled modeling system for Arctic sea ice simulation and prediction: a case study for 2018. Geoscientific Model Development, 15(3): 1155–1176, doi: 10.5194/gmd-15-1155-2022
    Yang Chaoyuan, Liu Jiping, Chen Dake. 2024. Understanding the influence of ocean waves on Arctic sea ice simulation: a modeling study with an atmosphere–ocean–wave–sea ice coupled model. The Cryosphere, 18(3): 1215–1239, doi: 10.5194/tc-18-1215-2024
    Yang Chaoyuan, Liu Jiping, Xu Shiming. 2020. Seasonal Arctic sea ice prediction using a newly developed fully coupled regional model with the assimilation of satellite sea ice observations. Journal of Advances in Modeling Earth Systems, 12(5): e2019MS001938, doi: 10.1029/2019MS001938
    Yang Qinghua, Losa S N, Losch M, et al. 2014. Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter. Journal of Geophysical Research: Oceans, 119(10): 6680–6692, doi: 10.1002/2014JC009963
    Yang Qinghua, Losa S N, Losch M, et al. 2015. The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction. Quarterly Journal of the Royal Meteorological Society, 141(691): 2314–2323, doi: 10.1002/qj.2523
    Yang Qinghua, Mu Longjiang, Wu Xingren, et al. 2019. Improving Arctic sea ice seasonal outlook by ensemble prediction using an ice-ocean model. Atmospheric Research, 227: 14–23, doi: 10.1016/j.atmosres.2019.04.021
    Yang Jiayan, Proshutinsky A, Lin Xiaopei. 2016a. Dynamics of an idealized Beaufort Gyre: 1. The effect of a small beta and lack of western boundaries. Journal of Geophysical Research: Oceans, 121(2): 1249–1261, doi: 10.1002/2015JC011296
    Yang Xiaoyi, Yuan Xiaojun, Ting Mingfang. 2016b. Dynamical link between the Barents–Kara sea ice and the Arctic Oscillation. Journal of Climate, 29(14): 5103–5122, doi: 10.1175/JCLI-D-15-0669.1
    Yao Yao, Luo Dehai, Dai Aiguo, et al. 2017. Increased quasi stationarity and persistence of winter ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: insights from observational analyses. Journal of Climate, 30(10): 3549–3568, doi: 10.1175/JCLI-D-16-0261.1
    Yao Yao, Zhuo Wenqin, Gong Zhaohui, et al. 2023. Extreme cold events in North America and Eurasia in November-December 2022: a potential vorticity gradient perspective. Advances in Atmospheric Sciences, 40(6): 953–962, doi: 10.1007/s00376-023-2384-3
    You Qinglong, Cai Ziyi, Pepin Nick, et al. 2021. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Science Reviews, 217: 103625, doi: 10.1016/j.earscirev.2021.103625
    You Cheng, Tjernström M, Devasthale A. 2022. Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets. Atmospheric Chemistry and Physics, 22(12): 8037–8057, doi: 10.5194/acp-22-8037-2022
    Yu Lei, Liu Jiping, Gao Yongqi, et al. 2022. A sensitivity study of Arctic ice-ocean heat exchange to the three-equation boundary condition parametrization in CICE6. Advances in Atmospheric Sciences, 39(9): 1398–1416, doi: 10.1007/s00376-022-1316-y
    Yu Miao, Lu Peng, Leppäranta M, et al. 2024. Modeled variations in the inherent optical properties of summer Arctic ice and their effects on the radiation budget: a case based on ice cores from 2008 to 2016. The Cryosphere, 18(1): 273–288, doi: 10.5194/tc-18-273-2024
    Yu Miao, Lu Peng, Li Zhiyuan, et al. 2021. Sea ice conditions and navigability through the northeast Passage in the past 40 years based on remote-sensing data. International Journal of Digital Earth, 14(5): 555–574, doi: 10.1080/17538947.2020.1860144
    Yue Fange, Angot H, Blomquist B, et al. 2023. The marginal ice zone as a dominant source region of atmospheric mercury during central Arctic summertime. Nature Communications, 14(1): 4887, doi: 10.1038/s41467-023-40660-9
    Zampieri L, Clemens-Sewall D, Sledd A, et al. 2024. Modeling the winter heat conduction through the sea ice system during MOSAiC. Geophysical Research Letters, 51(8): e2023GL106760, doi: 10.1029/2023GL106760
    Zhai Mengxi, Cheng Bin, Leppäranta M, et al. 2022. The seasonal cycle and break-up of landfast sea ice along the northwest coast of Kotelny Island, East Siberian Sea. Journal of Glaciology, 68(267): 153–165, doi: 10.1017/jog.2021.85
    Zhang Yuanyuan, Cheng Xxiao, Liu Jiping, et al. 2018a. The potential of sea ice leads as a predictor for summer Arctic sea ice extent. The Cryosphere, 12(12): 3747–3757, doi: 10.5194/tc-12-3747-2018
    Zhang Ying, Chi Zhaohui, Hui Fengming, et al. 2021a. Accuracy evaluation on geolocation of the Chinese first polar microsatellite (ice pathfinder) imagery. Remote Sensing, 13(21): 4278, doi: 10.3390/rs13214278
    Zhang Lei, Ding Minghu, Zheng Xiangdong, et al. 2023a. Assessment of AIRS version 7 temperature profiles and low-level inversions with GRUAN radiosonde observations in the Arctic. Remote Sensing, 15(5): 1270, doi: 10.3390/rs15051270
    Zhang Xiangdong, He Juanxiong, Zhang Jing, et al. 2013. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 3(1): 47–51, doi: 10.1038/nclimate1631
    Zhang Lu, Hui Fengming, Cheng Xiao, et al. 2024a. Enhancing the quality of FY-3D MERSI-II TIR images: an application to improve sea ice lead detection. IEEE Transactions on Geoscience and Remote Sensing, 62: 4301816, doi: 10.1109/TGRS.2024.3415172
    Zhang Zhilun, Hui Fengming, Shokr M, et al. 2024b. Winter Arctic sea ice surface form drag during 1999–2021: satellite retrieval and spatiotemporal variability. IEEE Transactions on Geoscience and Remote Sensing, 62: 4300420, doi: 10.1109/TGRS.2023.3347694
    Zhang Fanyi, Lei Ruibo, Zhai Mengxi, et al. 2023b. The impacts of anomalies in atmospheric circulations on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020. The Cryosphere, 17(11): 4609–4628, doi: 10.5194/tc-17-4609-2023
    Zhang Lei, Li Jian, Ding Minghu, et al. 2021b. Characteristics of low-level temperature inversions over the Arctic Ocean during the CHINARE 2018 campaign in summer. Atmospheric Environment, 253: 118333, doi: 10.1016/j.atmosenv.2021.118333
    Zhang Fanyi, Pang Xiaoping, Lei Ruibo, et al. 2022a. Arctic sea ice motion change and response to atmospheric forcing between 1979 and 2019. International Journal of Climatology, 42(3): 1854–1876, doi: 10.1002/joc.7340
    Zhang Ruonan, Screen J A. 2021. Diverse Eurasian winter temperature tesponses to Barents-Kara sea ice anomalies of different magnitudes and seasonality. Geophysical Research Letters, 48(13): e2021GL092726, doi: 10.1029/2021GL092726
    Zhang Ruonan, Screen J A, Zhang Renhe. 2022b. Arctic and Pacific Ocean conditions were favorable for cold extremes over Eurasia and North America during winter 2020/21. Bulletin of the American Meteorological Society, 103(10): E2285–E2301, doi: 10.1175/BAMS-D-21-0264.1
    Zhang Yiming, Song Mirong, Dong Changming, et al. 2021c. Modeling turbulent heat fluxes over Arctic sea ice using a maximum-entropy-production approach. Advances in Climate Change Research, 12(4): 517–526, doi: 10.1016/j.accre.2021.07.003
    Zhang Ruonan, Sun Chenghu, Zhang Renhe, et al. 2019. Role of Eurasian snow cover in linking winter-spring Eurasian coldness to the autumn Arctic sea ice retreat. Journal of Geophysical Research: Atmospheres, 124(16): 9205–9221, doi: 10.1029/2019JD030339
    Zhang Ruonan, Sun Chenghu, Zhu Jieshun, et al. 2020a. Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. npj Climate and Atmospheric Science, 3(1): 7, doi: 10.1038/s41612-020-0110-8
    Zhang Jiankan, Tian Wenshou, Chipperfield M P, et al. 2016. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nature Climate Change, 6(12): 1094–1099, doi: 10.1038/nclimate3136
    Zhang Yan, Wang Xuantong, Sun Yuhao, et al. 2023c. Ocean Modeling with Adaptive REsolution (OMARE; version 1.0) – refactoring the NEMO model (version 4.0. 1) with the parallel computing framework of JASMIN – Part 1: adaptive grid refinement in an idealized double-gyre case. Geoscientific Model Development, 16(2): 679–704, doi: 10.5194/gmd-16-679-2023
    Zhang Jiaxu, Weijer W, Steele M, et al. 2021d. Labrador Sea freshening linked to Beaufort Gyre freshwater release. Nature Communications, 12(1): 1229, doi: 10.1038/s41467-021-21470-3
    Zhang Pengfei, Wu Yutian, Chen Gang, et al. 2020b. North American cold events following sudden stratospheric warming in the presence of low Barents-Kara Sea sea ice. Environmental Research Letters, 15(12): 124017, doi: 10.1088/1748-9326/abc215
    Zhang Xuanwen, Wu Bingyi, Ding Shuoyi. 2024c. Summer Russian heat waves linked to Arctic sea ice anomalies in 2010 and 2016. Journal of Climate, 37(5): 1597–1611, doi: 10.1175/JCLI-D-23-0087.1
    Zhang Pengfei, Wu Yutian, Simpson I R, et al. 2018b. A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Science Advances, 4(7): eaat6025, doi: 10.1126/sciadv.aat6025
    Zhang Peiwen, Xu Zhenhua, Li Qun, et al. 2022c. Numerical simulations of internal solitary wave evolution beneath an ice keel. Journal of Geophysical Research: Oceans, 127(2): e2020JC017068, doi: 10.1029/2020JC017068
    Zhang Ruonan, Zhang Renhe, Dai Guokun. 2022d. Intraseasonal contributions of Arctic sea-ice loss and Pacific decadal oscillation to a century cold event during early 2020/21 winter. Climate Dynamics, 58(3): 741–758, doi: 10.1007/s00382-021-05931-5
    Zhao Jiazhen, He Shengping, Wang Huijun, et al. 2022. Constraining CMIP6 projections of an ice-free Arctic using a weighting scheme. Earths Future, 10(10): e2022EF002708, doi: 10.1029/2022EF002708
    Zhao Jiazhen, He Shengping, Wang Huijun. 2023. Role of atmosphere–ocean–ice interaction in the linkage between December Bering sea ice and subsequent February surface air temperature over North America. Journal of Climate, 36(6): 1679–1696, doi: 10.1175/JCLI-D-22-0265.1
    Zheng Zijia, Luo Xiaofan, Wei Hao, et al. 2023. Modeling the continental shelf pump for dissolved inorganic carbon in the Chukchi Sea from 1998 to 2015. Journal of Geophysical Research: Oceans, 128(8): e2023JC020094, doi: 10.1029/2023JC020094
    Zhong Wenli, Steele M, Zhang Jinlun, et al. 2018. Greater role of geostrophic currents in ekman dynamics in the western Arctic Ocean as a mechanism for Beaufort Gyre stabilization. Journal of Geophysical Research: Oceans, 123(1): 149–165, doi: 10.1002/2017JC013282
    Zhong Wenli, Steele M, Zhang Jinlun, et al. 2019a. Circulation of Pacific winter water in the western Arctic Ocean. Journal of Geophysical Research: Oceans, 124(2): 863–881, doi: 10.1029/2018JC014604
    Zhong Wenli, Zhang Jinlun, Steele M, et al. 2019b. Episodic extrema of surface stress energy input to the western Arctic Ocean contributed to step changes of freshwater content in the Beaufort Gyre. Geophysical Research Letters, 46(21): 12173–12182, doi: 10.1029/2019GL084652
    Zhou Xiangying, Min Chao, Yang Yijun, et al. 2021. Revisiting trans-Arctic maritime navigability in 2011–2016 from the perspective of sea ice thickness. Remote Sensing, 13(14): 2766., doi: 10.3390/rs13142766
    Zhu Weixin, Liu Siqi, Xu Shiming, et al. 2024. A 12-year climate record of wintertime wave-affected marginal ice zones in the Atlantic Arctic based on CryoSat-2. Earth System Science Data, 16(6): 2917–2940, doi: 10.5194/essd-16-2917-2024
    Zou Chuntao, Zhang Ruonan. 2024. Arctic sea ice loss modulates the surface impact of autumn stratospheric polar vortex stretching events. Geophysical Research Letters, 51(3): e2023GL107221, doi: 10.1029/2023GL107221
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  12
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-02-19

目录

    /

    返回文章
    返回