Ontogenetic difference of beak elemental concentration and its possible application in migration reconstruction for Ommastrephes bartramii in the North Pacific Ocean

Fang Zhou Liu Bilin Chen Xinjun Chen Yong

方舟, 刘必林, 陈新军, 陈勇. 北太平洋柔鱼不同阶段角质颚微量元素含量差异及洄游路径推测的应用[J]. 海洋学报英文版, 2019, 38(10): 43-52. doi: 10.1007/s13131-019-1431-5
引用本文: 方舟, 刘必林, 陈新军, 陈勇. 北太平洋柔鱼不同阶段角质颚微量元素含量差异及洄游路径推测的应用[J]. 海洋学报英文版, 2019, 38(10): 43-52. doi: 10.1007/s13131-019-1431-5
Fang Zhou, Liu Bilin, Chen Xinjun, Chen Yong. Ontogenetic difference of beak elemental concentration and its possible application in migration reconstruction for Ommastrephes bartramii in the North Pacific Ocean[J]. Acta Oceanologica Sinica, 2019, 38(10): 43-52. doi: 10.1007/s13131-019-1431-5
Citation: Fang Zhou, Liu Bilin, Chen Xinjun, Chen Yong. Ontogenetic difference of beak elemental concentration and its possible application in migration reconstruction for Ommastrephes bartramii in the North Pacific Ocean[J]. Acta Oceanologica Sinica, 2019, 38(10): 43-52. doi: 10.1007/s13131-019-1431-5

北太平洋柔鱼不同阶段角质颚微量元素含量差异及洄游路径推测的应用

doi: 10.1007/s13131-019-1431-5
基金项目: The National Natural Science Foundation of China under contract No. NSFC4147129; the China Postdoctoral Science Foundation under contract No. 2017M610277; the Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources (Shanghai Ocean University), Ministry of Education under contract No. A1-0203-00-2009-6; the Fund of Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, China under contract LOF 2018-02.

Ontogenetic difference of beak elemental concentration and its possible application in migration reconstruction for Ommastrephes bartramii in the North Pacific Ocean

  • 摘要: 大洋性鱿鱼的洄游路径能够给我们重要的信息,帮助我们了解其时空分布的变化。标记-重捕和电子标记方法在施行过程中仍存在一些问题。头足类的硬组织,如角质颚,有着稳定的形态特征和类似耳石的连续生长纹,同时包含丰富的生态信息,可以为我们研究物种的时空分布提供相关信息。本研究中,我们以北太平洋柔鱼为研究对象,基于不同角质颚生长阶段进行取样来重建鱿鱼的洄游路径。研究结果认为,通过电感耦合等离子质谱仪(LA-ICP-MS)取样,发现角质颚的喙端矢状平面(RSS)检测到9种微量元素。针对上述几种元素,发现不同生长阶段的磷(P)、铜(Cu)和锌(Zn)存在显著差异。利用钠(Na)、磷和锌与海表面温度(SST)建立线性回归模型。基于贝叶斯模型,计算出不同时期柔鱼出现的较高概率的海域。结合不同时期的高概率分布海域,建立起柔鱼的洄游路径,该结果与前人研究结果一致。本研究也证实了角质颚可以为研究大洋性柔鱼的洄游路径提供有效的信息。
  • Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6): 716–723, doi: 10.1109/TAC.1974.1100705
    Alabia I D, Saitoh S I, Hirawake T, et al. 2016. Elucidating the potential squid habitat responses in the central North Pacific to the recent ENSO flavors. Hydrobiologia, 772(1): 215–227, doi: 10.1007/s10750-016-2662-5
    Alabia I D, Saitoh S I, Mugo R, et al. 2015. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific. Fisheries Oceanography, 24(2): 190–203, doi: 10.1111/fog.2015.24.issue-2
    Arbuckle N S M, Wormuth J H. 2014. Trace elemental patterns in Humboldt squid statoliths from three geographic regions. Hydrobiologia, 725(1): 115–123, doi: 10.1007/s10750-013-1608-4
    Arkhipkin A I. 2005. Statoliths as ‘black boxes’(life recorders) in squid. Marine and Freshwater Research, 56(5): 573–583, doi: 10.1071/MF04158
    Arkhipkin A I, Shcherbich Z N. 2012. Thirty years’ progress in age determination of squid using statoliths. Journal of the Marine Biological Association of the United Kingdom, 92(6): 1389–1398, doi: 10.1017/S0025315411001585
    Bettencourt V, Guerra A. 2000. Growth increments and biomineralization process in cephalopod statoliths. Journal of Experimental Marine Biology and Ecology, 248(2): 191–205, doi: 10.1016/S0022-0981(00)00161-1
    Bower J R, Ichii T. 2005. The red flying squid (Ommastrephes bartramii): a review of recent research and the fishery in Japan. Fisheries Research, 76(1): 39–55, doi: 10.1016/j.fishres.2005.05.009
    Boyle P, Rodhouse P G. 2005. Cephalopods. Ecology and Fisheries. Oxford: Blackwell Publishing, 222–233
    Chen Xinjun, Liu Bilin, Chen Yong. 2008. A review of the development of Chinese distant-water squid jigging fisheries. Fisheries Research, 89(3): 211–221, doi: 10.1016/j.fishres.2007.10.012
    Chen Xinjun, Lu Huajie, Liu Bilin, et al. 2012. Species identification of Ommastrephes bartramii, Dosidicus gigas, Sthenoteuthis oualaniensis and Illex argentines (Ommastrephidae) using beak morphological variables. Scientia Marina, 76(3): 473–481, doi: 10.3989/scimar.2012.76n3
    Elsdon T, Gillanders B. 2005. Strontium incorporation into calcified structures: separating the effects of ambient water concentration and exposure time. Marine Ecology Progress Series, 285: 233–243, doi: 10.3354/meps285233
    Fang Zhou, Liu Bilin, Chen Xinjun, et al. 2016a. Sexual asynchrony in the development of beak pigmentation for the neon flying squid Ommastrephes bartramii in the North Pacific Ocean. Fisheries Science, 82(5): 737–746, doi: 10.1007/s12562-016-1011-y
    Fang Zhou, Li Jianhua, Thompson K, et al. 2016b. Age, growth, and population structure of the red flying squid (Ommastrephes bartramii) in the North Pacific Ocean, determined from beak microstructure. Fishery Bulletin, 114(1): 34–44, doi: 10.7755/FB
    Fang Zhou, Thompson K, Jin Yue, et al. 2016c. Preliminary analysis of beak stable isotopes (δ13C and δ15N) stock variation of neon flying squid, Ommastrephes bartramii, in the North Pacific Ocean. Fisheries Research, 177: 153–163, doi: 10.1016/j.fishres.2016.01.011
    Franco-Santos R M, Vidal E A G. 2014. Beak development of early squid paralarvae (Cephalopoda: Teuthoidea) may reflect an adaptation to a specialized feeding mode. Hydrobiologia, 725(1): 85–103, doi: 10.1007/s10750-013-1715-2
    Hernández-López J L, Castro-Hernández J L, Hernández-Garcia V. 2001. Age determined from the daily deposition of concentric rings on common octopus (Octopus vulgaris) beaks. Fishery Bulletin, 99(4): 679–684
    Ichii T, Mahapatra K, Sakai M, et al. 2004. Differing body size between the autumn and the winter-spring cohorts of neon flying squid (Ommastrephes bartramii) related to the oceanographic regime in the North Pacific: a hypothesis. Fisheries Oceanography, 13(5): 295–309, doi: 10.1111/fog.2004.13.issue-5
    Ichii T, Mahapatra K, Sakai M, et al. 2009. Life history of the neon flying squid: effect of the oceanographic regime in the North Pacific Ocean. Marine Ecology Progress Series, 378: 1–11, doi: 10.3354/meps07873
    Igarashi H, Ichii T, Sakai M, et al. 2017. Possible link between interannual variation of neon flying squid (Ommastrephes bartramii) abundance in the North Pacific and the climate phase shift in 1998/1999. Progress in Oceanography, 150: 20–34, doi: 10.1016/j.pocean.2015.03.008
    Ikeda Y, Arai N, Kidokoro H, et al. 2003. Strontium: calcium ratios in statoliths of Japanese common squid Todarodes pacificus (Cephalopoda: Ommastrephidae) as indicators of migratory behavior. Marine Ecology Progress Series, 251: 169–179, doi: 10.3354/meps251169
    Ikeda Y, Arai N, Sakamoto W, et al. 1997. Comparison on trace elements in squid statoliths of different species’ origin: as available key for taxonomic and phylogenetic study. International Journal of PIXE, 7(3–4): 141–146
    Ikeda Y, Yatsu A, Arai N, et al. 2002. Concentration of statolith trace elements in the jumbo flying squid during El Niño and non-El Niño years in the eastern Pacific. Journal of the Marine Biological Association of the UK, 82(5): 863–866, doi: 10.1017/S0025315402006264
    Jennings S, Cogan S M. 2015. Nitrogen and carbon stable isotope variation in northeast Atlantic fishes and squids. Ecology, 96(9): 2568, doi: 10.1890/15-0299.1
    Jereb P, Roper C F E. 2010. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. In: Myopsid and Oegopsid Squids. Vol. 2. Rome: FAO Species Catalogue for Fishery Purposes, 269
    Kato Y, Sakai M, Mmasujima M, et al. 2014. Effects of hydrographic conditions on the transport of neon flying squid Ommastrephes bartramii larvae in the North Pacific Ocean. Hidrobiológica, 24(1): 33–38
    Liu Bilin, Cao Jie, Truesdell S B, et al. 2016. Reconstructing cephalopod migration with statolith elemental signatures: a case study using Dosidicus gigas. Fisheries Science, 82(3): 425–433, doi: 10.1007/s12562-016-0978-8
    Liu Bilin, Chen Xinjun, Chen Yong, et al. 2013. Geographic variation in statolith trace elements of the Humboldt squid, Dosidicus gigas, in high seas of Eastern Pacific Ocean. Marine Biology, 160(11): 2853–2862, doi: 10.1007/s00227-013-2276-7
    Liu Bilin, Chen Yong, Chen Xinjun. 2015a. Spatial difference in elemental signatures within early ontogenetic statolith for identifying Jumbo flying squid natal origins. Fisheries Oceanography, 24(4): 335–346, doi: 10.1111/fog.2015.24.issue-4
    Liu Bilin, Chen Xinjun, Chen Yong, et al. 2015c. Determination of squid age using upper beak rostrum sections: technique improvement and comparison with the statolith. Marine Biology, 162(8): 1685–1693, doi: 10.1007/s00227-015-2702-0
    Liu Bilin, Fang Zhou, Chen Xinjun, et al. 2015b. Spatial variations in beak structure to identify potentially geographic populations of Dosidicus gigas in the Eastern Pacific Ocean. Fisheries Research, 164: 185–192, doi: 10.1016/j.fishres.2014.12.001
    Mereu M, Agus B, Cannas R, et al. 2015. Mark-recapture investigation on Octopus vulgaris specimens in an area of the central western Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 95(1): 131–138, doi: 10.1017/S002531541400112X
    Miserez A, Li Youli, Waite J H, et al. 2007. Jumbo squid beaks: inspiration for design of robust organic composites. Acta Biomaterialia, 3(1): 139–149, doi: 10.1016/j.actbio.2006.09.004
    Miserez A, Schneberk T, Sun Chengjun, et al. 2008. The transition from stiff to compliant materials in squid beaks. Science, 319(5871): 1816–1819, doi: 10.1126/science.1154117
    Miserez A, Rubin D, Waite J H. 2010. Cross-linking chemistry of squid beak. Journal of Biological Chemistry, 285(49): 38115–38124, doi: 10.1074/jbc.M110.161174
    Moltschaniwskyj N, Cappo M. 2009. Alternatives to sectioned otoliths: the use of other structures and chemical techniques to estimate age and growth for marine vertebrates and invertebrates. In: Green B S, Mapstone B D, Carlos G, et al, eds. Tropical Fish Otoliths: Information for Assessment, Management and Ecology. Dordrecht: Springer, 133–173
    Murata M, Nakamura Y. 1998. Seasonal migration and diel vertical migration of the neon flying squid, Ommastrephes bartramii, in the North Pacific. In: Okutani T, ed. Contributed Papers to International Symposium on Large Pelagic Squids. Tokyo: Japan Marine Fishery Resources Research Center, 13–30
    Navarro J, Coll M, Somes C, et al. 2013. Trophic niche of squids: Insights from isotopic data in marine systems worldwide. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 95: 93–102, doi: 10.1016/j.dsr2.2013.01.031
    Nishikawa H, Igarashi H, Ishikawa Y, et al. 2014. Impact of paralarvae and juveniles feeding environment on the neon flying squid (Ommastrephes bartramii) winter-spring cohort stock. Fisheries Oceanography, 23(4): 289–303, doi: 10.1111/fog.2014.23.issue-4
    Nishikawa H, Toyoda T, Masuda S, et al. 2015. Wind-induced stock variation of the neon flying squid (Ommastrephes bartramii) winter-spring cohort in the subtropical North Pacific Ocean. Fisheries Oceanography, 24(3): 229–241, doi: 10.1111/fog.12106
    O’Dor R K, Balch N. 1985. Properties of iIlex illecebrosus egg masses potentially influencing larval oceanographic distribution. NAFO Science Council Studies, 9: 69–76
    Perales-Raya C, Almansa E, Bartolomé A, et al. 2014b. Age validation in Octopus vulgaris beaks across the full ontogenetic range: beaks as recorders of life events in octopuses. Journal of Shellfish Research, 33(2): 481–493, doi: 10.2983/035.033.0217
    Perales-Raya C, Bartolomé A, García-Santamaría M T, et al. 2010. Age estimation obtained from analysis of octopus (Octopus vulgaris Cuvier, 1797) beaks: Improvements and comparisons. Fisheries Research, 106(2): 171–176, doi: 10.1016/j.fishres.2010.05.003
    Perales-Raya C, Jurado-Ruzafa A, Bartolomé A, et al. 2014a. Age of spent Octopus vulgaris and stress mark analysis using beaks of wild individuals. Hydrobiologia, 725(1): 105–114, doi: 10.1007/s10750-013-1602-x
    R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
    Ripley B, Ribeiro P J, Diggle P J. 2001. Spatial Statistics in R and geoR : A Package for Geostatistical Analysis. Analysis, 6(1): 14–15
    Rodríguez-Navarro A, Guerra A, Romanek C S, et al. 2006. Life history of the giant squid Architeuthis as revealed from stable isotope and trace elements signatures recorded in its beak. In: Moltschaniwskyj N, ed. Cephalopod Life Cycle. Cephalopod International Advisory Council Symposium 2006 (CIAC ’06). 6–10 February 2006, Hotel Grand Chancellor, Hobart, Tasmania, 97
    Semmens J M, Pecl G T, Gillanders B M, et al. 2007. Approaches to resolving cephalopod movement and migration patterns. Reviews in Fish Biology and Fisheries, 17(2–3): 401–423, doi: 10.1007/s11160-007-9048-8
    Sims D W, Genner M J, Southward A J, et al. 2001. Timing of squid migration reflects North Atlantic climate variability. Proceedings of the Royal Society B: Biological Sciences, 268(1485): 2607–2611, doi: 10.1098/rspb.2001.1847
    Slominski A, Tobin D J, Shibahara S, et al. 2004. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiological Reviews, 84(4): 1155–1228, doi: 10.1152/physrev.00044.2003
    Staaf D J, Coop S C, Haddock S H, et al. 2008. Natural egg mass deposition by the Humboldt squid (Dosidicus gigas) in the Gulf of California and characteristics of hatchlings and paralarvae. Journal of the Marine Biological Association of the UK, 88(4): 759–770
    Swan G A. 1974. Structure, chemistry, and biosynthesis of the melanins. In: Herz W, Grisebach H, Kirby G W, eds. Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products. Vienna: Springer, 521–582
    Tanaka H. 2001. Tracking the neon flying squid by the biotelemetry system, in the central North Pacific Ocean. Aquabiology (in Japanese), 23(6): 533–539
    Tian Siquan, Chen Xinjun, Chen Yong, et al. 2009. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the Northwestern Pacific Ocean. Fisheries Research, 95(2–3): 181–188, doi: 10.1016/j.fishres.2008.08.012
    Tian Yongjun, Nashida K, Sakaji H. 2013. Synchrony in the abundance trend of spear squid Loligo bleekeri in the Japan Sea and the Pacific Ocean with special reference to the latitudinal differences in response to the climate regime shift. ICES Journal of Marine Science, 70(5): 968–979, doi: 10.1093/icesjms/fst015
    VanBogelen R A, Olson E R, Wanner B L, et al. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. Journal of Bacteriology, 178(15): 4344–4366, doi: 10.1128/jb.178.15.4344-4366.1996
    Venables W N, Ripley B D. 2002. Modern Applied Statistics with S. 4th ed. New York: Springer
    Vijai D, Sakai M, Wakabayashi T, et al. 2015. Effects of temperature on embryonic development and paralarval behavior of the neon flying squid Ommastrephes bartramii. Marine Ecology Progress Series, 529: 145–158, doi: 10.3354/meps11286
    Watanabe H, Kubodera T, Ichii T, et al. 2004. Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific. Marine Ecology Progress Series, 266: 173–184, doi: 10.3354/meps266173
    Watanabe H, Kubodera T, Ichii T, et al. 2008. Diet and sexual maturation of the neon flying squid Ommastrephes bartramii during autumn and spring in the Kuroshio-Oyashio transition region. Journal of the Marine Biological Association of the United Kingdom, 88: 381–389
    Wearmouth V J, Durkin O C, Bloor I S M, et al. 2013. A method for long-term electronic tagging and tracking of juvenile and adult European common cuttlefish Sepia officinalis. Journal of Experimental Marine Biology and Ecology, 447: 149–155, doi: 10.1016/j.jembe.2013.02.023
    Young R E, Harman R F. 1988. “Larva”, “paralarva” and “subadult” in cephalopod terminology. Malacologia, 29(1): 201–207
    Zumholz K. 2005. The influence of environmental factors on the micro-chemical composition of cephalopod statoliths [dissertation]. Kiel: University of Kiel
  • 加载中
计量
  • 文章访问数:  557
  • HTML全文浏览量:  87
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-09

目录

    /

    返回文章
    返回