Volume 43 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Li Li, Quan Li, Tao Cheng, Songling Yang, Yong Rao, Xinyu Liu, Wenjing Ding. Geochemical characteristics and origins of natural gases in the eastern Cote d’Ivoire Basin, West Africa[J]. Acta Oceanologica Sinica, 2024, 43(8): 26-36. doi: 10.1007/s13131-024-2335-6
Citation: Li Li, Quan Li, Tao Cheng, Songling Yang, Yong Rao, Xinyu Liu, Wenjing Ding. Geochemical characteristics and origins of natural gases in the eastern Cote d’Ivoire Basin, West Africa[J]. Acta Oceanologica Sinica, 2024, 43(8): 26-36. doi: 10.1007/s13131-024-2335-6

Geochemical characteristics and origins of natural gases in the eastern Cote d’Ivoire Basin, West Africa

doi: 10.1007/s13131-024-2335-6
Funds:  The Major Science and Technology Project of CNOOC under contract No. KJGG2022-0902; the National Natural Science Foundation of China under contract Nos 42202184 and 42272177.
More Information
  • Corresponding author: Li Li, E-mail: li.li40@hdr.mq.edu.au
  • Received Date: 2023-07-23
  • Accepted Date: 2023-12-05
  • Available Online: 2024-06-06
  • Publish Date: 2024-08-25
  • The gas sources in the eastern Cote d’Ivoire Basin (Tano Basin) are seldom reported and remain controversial due to multiple sets of potential source rocks and poorly documented geochemical characteristics of natural gases. The marine source rock potential from the Upper Albian to Turonian as well as the molecular composition and the stable carbon isotope composition of natural gases in the eastern Cote d’Ivoire Basin were studied in detail to investigate the origins of natural gases. The total organic carbon (TOC), hydrogen index (HI), and generation potential (S1 + S2) of source rocks indicate that both sapropelic source rocks and humic source rocks developed during the late Albian, whereas sapropelic source rocks developed during the Cenomanian and the Turonian. The normal order of δ13CH4 < δ13C2H6 < δ13C3H8 (δ13C1 < δ13C2 < δ13C3), the relationship between C2/C3 molar ratio and δ13C2-δ13C3, and the plot of δ13C1 versus C1/(C2+C3) collectively show that the natural gases are thermogenic due to the primary cracking of kerogen, including the typical oil-associated gases from Well D-1, the mixed oil-associated gases and coal-derived gases from Well G-1 and Well L-1. Based on the plot of δ13C1 versus δ13C2 and the established relationship between δ13C1 and equivalent vitrinite reflectance (Ro), we proposed that the natural gases are in a mature stage (Ro generally varies from 1.0% to 1.3%). Combined with results of basin modelling and oil-to-source correlation, the transitional to marine source rocks during the late Albian were thought to have made a great contribution to the natural gases. Our study will make a better understanding on petroleum system in the eastern Cote d’Ivoire Basin.
  • loading
  • Antobreh A A, Faleide J I, Tsikalas F, et al. 2009. Rift–shear architecture and tectonic development of the Ghana margin deduced from multichannel seismic reflection and potential field data. Marine and Petroleum Geology, 26(3): 345–368, doi: 10.1016/j.marpetgeo.2008.04.005
    Atta-Peters D, Achaegakwo C A, Kwayisi D, et al. 2015. Palynofacies and source rock potential of the ST-7H well, offshore Tano Basin, western region, Ghana. Journal of Earth Science, 4(1): 1–20
    Atta-Peters D, Garrey P. 2014. Source rock evaluation and hydrocarbon potential in the Tano Basin, south western Ghana, west Africa. International Journal of Oil, Gas and Coal Engineering, 2(5): 66–77
    Basile C, Mascle J, Benkhelil J, et al. 1998. Geodynamic evolution of the Côte d'Ivoire-Ghana transform margin: an overview of Leg 159 results. In: Mascle J, Lohmann G P, Moullade M, eds. Proceedings of the Ocean Drilling Program, Scientific Results. 101–110 (doi: 10.2973/odp.proc.sr.159.048.1998
    Basile C, Mascle J, Popoff M, et al. 1993. The Ivory Coast-Ghana transform margin: a marginal ridge structure deduced from seismic data. Tectonophysics, 222(1): 1–19, doi: 10.1016/0040-1951(93)90186-N
    Bempong F K, Ozumba B M, Hotor V, et al. 2019. A review of the geology and the petroleum potential of the Cretaceous Tano Basin of Ghana. Journal of Petroleum & Environmental Biotechnology, 10(4): 1000395
    Benkhelil J, Mascle J, Guiraud M. 1998. Sedimentary and structural characteristics of the Cretaceous along the Côte d'Ivoire-Ghana transform margin and in the Benue Trough: a comparison. In: Mascle J, Lohmann G P, Moullade M, eds. Proceedings of the Ocean Drilling Program, Scientific Results. 93–99, doi: 10.2973/odp.proc.sr.159.007.1998
    Bernard B B, Brooks J M, Sackett W M. 1976. Natural gas seepage in the Gulf of Mexico. Earth and Planetary Science Letters, 31(1): 48–54, doi: 10.1016/0012-821X(76)90095-9
    Berner U, Faber E. 1996. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Organic Geochemistry, 24(10-11): 947–955, doi: 10.1016/S0146-6380(96)00090-3
    Berner U, Faber E, Stahl W. 1992. Mathematical simulation of the carbon isotopic fractionation between huminitic coals and related methane. Chemical Geology: Isotope Geoscience Section, 94(4): 315–319, doi: 10.1016/0168-9622(92)90006-V
    Bird S, Geno K, Enciso G. 2001. Potential deep water petroleum system, ivory coast, west Africa. In: Fillon R H, Rosen N C, Weimer P, et al, eds. Petroleum Systems of Deep-Water Basins–Global and Gulf of Mexico Experience. Tulsa: SEPM Society for Sedimentary Geology
    Blarez E, Mascle J. 1988. Shallow structures and evolution of the Ivory Coast and Ghana transform margin. Marine and Petroleum Geology, 5(1): 54–64, doi: 10.1016/0264-8172(88)90039-6
    Brownfield M E, Charpentier R R. 2006. Geology and total petroleum systems of the Gulf of Guinea province of west Africa. Reston: U. S. Geological Survey, 38
    Chierici M A. 1996. Stratigraphy, palaeoenvironments and geological evolution of the Ivory Coast-Ghana Basin. In: Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine. Pau, France: Elf Aquitaine, 293–303
    Clift P D, Lorenzo J, Carter A, et al. 1997. Transform tectonics and thermal rejuvenation on the Côte d’Ivoire–Ghana margin, west Africa. Journal of the Geological Society, 154(3): 483–489, doi: 10.1144/gsjgs.154.3.0483
    Dai Jinxing. 1992. Identification of various genetic natural gases. China Offshore Oil and Gas (in Chinese), 6(1): 11–19
    Dai Jinxing, Gong Deyu, Ni Yunyan, et al. 2014. Stable carbon isotopes of coal-derived gases sourced from the Mesozoic coal measures in China. Organic Geochemistry, 74: 123–142, doi: 10.1016/j.orggeochem.2014.04.002
    Dai Jinxing, Ni Yunyan, Huang Shipeng, et al. 2016. Secondary origin of negative carbon isotopic series in natural gas. Journal of Natural Gas Geoscience, 1(1): 1–7, doi: 10.1016/j.jnggs.2016.02.002
    Dai Jinxing, Ni Yunyan, Li Jian, et al. 2008. Carbon isotope types and significances of alkane gases from Junggar Basin and Tarim Basin. Xinjiang Petroleum Geology (in Chinese), 29(4): 403–410
    Dai Jinxing, Qin Shengfei, Tao Shizhen, et al. 2005. Developing trends of natural gas industry and the significant progress on natural gas geological theories in China. Natural Gas Geoscience (in Chinese), 16(2): 127–142
    Dai Jinxing, Wei Houfa, Song Yan, et al. 1987. Composition, carbon isotope characteristics and the origin of coal-bed gases in China and their implications. Science in China Series B, 30(12): 1324–1337
    Dailly P, Henderson T, Hudgens E, et al. 2013. Exploration for Cretaceous stratigraphic traps in the Gulf of Guinea, west Africa and the discovery of the Jubilee Field: a play opening discovery in the Tano Basin, offshore Ghana. Geological Society, London, Special Publications, 369(1): 235–248
    Davison I, Faull T, Greenhalgh J, et al. 2016. Transpressional structures and hydrocarbon potential along the Romanche fracture zone: a review. Geological Society, London, Special Publications, 431(1): 235–248
    Espitalié J, Marquis F, Barsony I. 1984. Geochemical logging. In: Voorhees K J, ed. Analytical Pyrolysis. Amsterdam: Elsevier, 276–304
    Faber E, Stahl W. 1984. Geochemical surface exploration for hydrocarbons in North Sea. AAPG Bulletin, 68(3): 363–386
    Faramawy S, Zaki T, Sakr A A E. 2016. Natural gas origin, composition, and processing: a review. Journal of Natural Gas Science and Engineering, 34: 34–54, doi: 10.1016/j.jngse.2016.06.030
    Gang Wenzhe, Gao Gang, Hao Shisheng. 1997. Carbon isotope of ethane applied in the analyses of genetic types of natural gas. Experimental Petroleum Geology (in Chinese), 19(2): 164–167
    Garry P, Atta-Peters D, Achaegakwo C. 2016. Source - rock potential of the Lower Cretaceous sediments in SD - 1X well, offshore Tano Basin, south western Ghana. Petroleum and Coal, 58(4): 476–489
    Hill R J, Jarvie D M, Zumberge J, et al. 2007. Oil and gas geochemistry and petroleum systems of the Fort Worth Basin. AAPG Bulletin, 91(4): 445–473, doi: 10.1306/11030606014
    Huang Baojia, Huang Hao, Wang Zhenfeng, et al. 2015. Kinetics and model of gas generation of source rocks in the deepwater area, Qiongdongnan Basin. Acta Oceanologica Sinica, 34(4): 11–18, doi: 10.1007/s13131-015-0646-3
    Lake Stuart, Derewetzky Aram, Frewin Neil. 2014. Structure, evolution, and petroleum systems of the Tano Basin, Ghana. In: Pindell J, Horn B, Rosen N, et al, eds. Sedimentary Basins: Origin, Depositional Histories, and Petroleum Systems. Houston: SEPM Society for Sedimentary Geology
    Li Yong, Lu Jungang, Liu Xiangjun, et al. 2022. Geochemistry and origins of natural gas in the Hong-Che fault zone of the Junggar Basin, NW China. Journal of Petroleum Science and Engineering, 214: 110501, doi: 10.1016/j.petrol.2022.110501
    Mascle J, Blarez E. 1987. Evidence for transform margin evolution from the Ivory Coast–Ghana continental margin. Nature, 326(6111): 378–381, doi: 10.1038/326378a0
    Milkov A V. 2018. Secondary microbial gas. In: Wilkes H, ed. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Cham: Springer, 613–622
    Milkov A V, Etiope G. 2018. Revised genetic diagrams for natural gases based on a global dataset of >20, 000 samples. Organic Geochemistry, 125: 109–120, doi: 10.1016/j.orggeochem.2018.09.002
    Morrison J, Burgess C, Cornford C, et al. 2000. Hydrocarbon systems of the Abidjan margin. In: Offshore West Africa 2000, Conference and Exhibition. Abidjan, Cote d'Ivoire: Penn Well Publishing, 1–13
    Pletsch T, Erbacher J, Holbourn A E L, et al. 2001. Cretaceous separation of Africa and south America: the view from the west African margin (ODP Leg 159). Journal of South American Earth Sciences, 14(2): 147–174, doi: 10.1016/S0895-9811(01)00020-7
    Prinzhofer A, Battani A. 2003. Gas isotopes tracing: an important tool for hydrocarbons exploration. Oil & Gas Science and Technology, 58(2): 299–311
    Prinzhofer A A, Huc A Y. 1995. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chemical Geology, 126(3-4): 281–290, doi: 10.1016/0009-2541(95)00123-9
    Prinzhofer A, Mello M R, Takaki T. 2000. Geochemical characterization of natural gas: a physical multivariable approach and its applications in maturity and migration estimates. AAPG Bulletin, 84(8): 1152–1172
    Prinzhofer A, Pernaton É. 1997. Isotopically light methane in natural gas: bacterial imprint or diffusive fractionation? Chemical Geology, 142(3–4): 193–200
    Rooney M A, Claypool G E, Chung H M. 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chemical Geology, 126(3-4): 219–232, doi: 10.1016/0009-2541(95)00119-0
    Rüpke L H, Schmid D W, Hartz E H, et al. 2010. Basin modelling of a transform margin setting: structural, thermal and hydrocarbon evolution of the Tano Basin, Ghana. Petroleum Geoscience, 16(3): 283–298, doi: 10.1144/1354-079309-905
    Strand K. 1998. Sedimentary facies and sediment composition changes in response to tectonics of the Côte d'Ivoire-Ghana transform margin. In: Mascle J, Lohmann G P, Moullade M, eds. Proceedings of the Ocean Drilling Program, Scientific Results. 113–123 (doi: 10.2973/odp.proc.sr.159.009.1998
    Su Long, Zhang Dongwei, Yang Haizhang, et al. 2018. Chemical kinetics evaluation and its application of natural gas generation derived from the Yacheng formation in the deep-water area of the Qiongdongnan Basin, China. Acta Oceanologica Sinica, 37(1): 50–59., doi: 10.1007/s13131-018-1158-8
    Tetteh J T. 2016. The Cretaceous play of Tano Basin, Ghana. International Journal of Applied Science and Technology, 6(1): 1–10
    Wagner T. 2002. Late Cretaceous to Early Quaternary organic sedimentation in the eastern Equatorial Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 179(1–2): 113–147
    Wang Zhenfeng, Sun Zhipeng, Zhang Daojun, et al. 2015. Geology and hydrocarbon accumulations in the deepwater of the northwestern South China Sea-with focus on natural gas. Acta Oceanologica Sinica, 34(10): 57–70, doi: 10.1007/s13131-015-0715-7
    Whiticar M J, Suess E. 1990. Hydrothermal hydrocarbon gases in the sediments of the King George Basin, Bransfield Strait, Antarctica. Applied Geochemistry, 5(1–2): 135–147, doi: 10.1016/0883-2927(90)90044-6
    Wu Xiaoqi, Liu Quanyou, Chen Yingbin, et al. 2020. Constraints of molecular and stable isotopic compositions on the origin of natural gas from Middle Triassic reservoirs in the Chuanxi large gas field, Sichuan Basin, SW China. Journal of Asian Earth Sciences, 204: 104589, doi: 10.1016/j.jseaes.2020.104589
    Ye Jing, Rouby D, Chardon D, et al. 2019. Post-rift stratigraphic architectures along the African margin of the Equatorial Atlantic: part I the influence of extension obliquity. Tectonophysics, 753: 49–62, doi: 10.1016/j.tecto.2019.01.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (101) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return