Turn off MathJax
Article Contents
Yuxin Shi, Hailong Liu, Xidong Wang, Quanan Zheng. Responses of the Southern Ocean mixed layer depth to the eastern and central Pacific El Niño events during austral winter[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2228-0
Citation: Yuxin Shi, Hailong Liu, Xidong Wang, Quanan Zheng. Responses of the Southern Ocean mixed layer depth to the eastern and central Pacific El Niño events during austral winter[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2228-0

Responses of the Southern Ocean mixed layer depth to the eastern and central Pacific El Niño events during austral winter

doi: 10.1007/s13131-023-2228-0
Funds:  The Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No. SL2021ZD204; the Sino-German Mobility Program under contract No. M0333; the grant of Shanghai Frontiers Science Center of Polar Science (SCOPS)
More Information
  • Corresponding author: Email: hailong.liu@sjtu.edu.cn
  • Received Date: 2023-02-08
  • Accepted Date: 2023-05-26
  • Available Online: 2024-03-07
  • Based on the Ocean Reanalysis System version 5 (ORAS5) and the fifth-generation reanalysis datasets derived from European Centre for Medium-Range Weather Forecasts (ERA5), we investigate the different impacts of the central Pacific (CP) El Niño and the eastern Pacific (EP) El Niño on the Southern Ocean (SO) mixed layer depth (MLD) during austral winter. The MLD response to the EP El Niño shows a dipole pattern in the South Pacific, namely the MLD dipole, which is the leading El Niño-induced MLD variability in the SO. The tropical Pacific warm sea surface temperature anomaly (SSTA) signal associated with the EP El Niño excites a Rossby wave train propagating southeastward and then enhances the Amundsen Sea low (ASL). This results in an anomalous cyclone over the Amundsen Sea. As a result, the anomalous southerly wind to the west of this anomalous cyclone advects colder and drier air into the southeast of New Zealand, leading to surface cooling through less total surface heat flux, especially surface sensible heat (SH) flux and latent heat (LH) flux, and thus contributing to the mix layer (ML) deepening. The east of the anomalous cyclone brings warmer and wetter air to the southwest of Chile, but the total heat flux anomaly shows no significant change. The warm air promotes the sea ice melting and maintains fresh water, which strengthens stratification. This results in a shallower MLD. During the CP El Niño, the response of MLD shows a separate negative MLD anomaly center in the central South Pacific. The Rossby wave train triggered by the warm SSTA in the central Pacific Ocean spreads to the Amundsen Sea, which weakens the ASL. Therefore, the anomalous anticyclone dominates the Amundsen Sea. Consequently, the anomalous northerly wind to the west of anomalous anticyclone advects warmer and wetter air into the central and southern Pacific, causing surface warming through increased SH, LH, and longwave radiation flux, and thus contributing to the ML shoaling. However, to the east of the anomalous anticyclone, there is no statistically significant impact on the MLD.
  • loading
  • Arrigo K R, van Dijken G, Long M. 2008. Coastal Southern Ocean: A strong anthropogenic CO2 sink. Geophysical Research Letters, 35(21): L21602, doi: 10.1029/2008gl035624
    Bell B, Hersbach H, Simmons A, et al. 2021. The ERA5 global reanalysis: preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147(741): 4186–4227, doi: 10.1002/qj.4174
    Bosc C, Delcroix T, Maes C. 2009. Barrier layer variability in the western Pacific warm pool from 2000 to 2007. Journal of Geophysical Research, 114(C6): C06023, doi: 10.1029/2008jc005187
    Cai Wenju, Santoso A, Wang Guojian, et al. 2014. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 510(7504): 254–258, doi: 10.1038/nature13327
    Cai Wenju, van Rensch P, Cowan T, et al. 2011. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. Journal of Climate, 24(15): 3910–3923, doi: 10.1175/2011jcli4129.1
    Cai Wenju, Wu Lixin, Lengaigne M, et al. 2019. Pantropical climate interactions. Science, 363(6430): eaav4236, doi: 10.1126/science.aav4236
    Carton J A, Grodsky S A, Liu Hailong. 2008. Variability of the oceanic mixed layer, 1960–2004. Journal of Climate, 21(5): 1029–1047, doi: 10.1175/2007jcli1798.1
    Chen Mingcheng, Li T, Wang Xiaohui. 2019. Asymmetry of atmospheric responses to two-type El Niño and La Niña over northwest Pacific. Journal of Meteorological Research, 33(5): 826–836, doi: 10.1007/s13351-019-9022-0
    Ciasto L M, England M H. 2011. Observed ENSO teleconnections to Southern Ocean SST anomalies diagnosed from a surface mixed layer heat budget. Geophysical Research Letters, 38(9): L09701, doi: 10.1029/2011gl046895
    Clem K R, Fogt R L. 2015. South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. Journal of Geophysical Research: Atmospheres, 120(7): 2773–2792, doi: 10.1002/2014jd022940
    de Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003, doi: 10.1029/2004jc002378
    de Boyer Montégut C, Mignot J, Lazar A, et al. 2007. Control of salinity on the mixed layer depth in the world ocean: 1. General description. Journal of Geophysical Research: Oceans, 112(C6): C06010, doi: 10.1029/2006jc003953
    Ding Qinghua, Steig E J, Battisti D S, et al. 2011. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geoscience, 4(6): 398–403, doi: 10.1038/ngeo1129
    Dong Shenfu, Gille S T, Sprintall J. 2007. An assessment of the Southern Ocean mixed layer heat budget. Journal of Climate, 20(17): 4425–4442, doi: 10.1175/jcli4259.1
    Dong Shenfu, Sprintall J, Gille S T, et al. 2008. Southern Ocean mixed-layer depth from Argo float profiles. Journal of Geophysical Research: Oceans, 113(C6): C06013, doi: 10.1029/2006jc004051
    Duan Rui, Yang Kunde, Ma Yuanliang, et al. 2012. A study of the mixed layer of the South China Sea based on the multiple linear regression. Acta Oceanologica Sinica, 31(6): 19–31, doi: 10.1007/s13131-012-0250-8
    Fogt R L, Bromwich D H, Hines K M. 2011. Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dynamics, 36(7/8): 1555–1576, doi: 10.1007/s00382-010-0905-0
    Foltz G R, McPhaden M J. 2009. Impact of barrier layer thickness on SST in the central tropical North Atlantic. Journal of Climate, 22(2): 285–299, doi: 10.1175/2008jcli2308.1
    Gupta A S, England M H. 2006. Coupled ocean-atmosphere-ice response to variations in the southern annular mode. Journal of Climate, 19(18): 4457–4486, doi: 10.1175/JCLI3843.1
    Helber R W, Kara A B, Richman J G, et al. 2012. Temperature versus salinity gradients below the ocean mixed layer. Journal of Geophysical Research: Oceans, 117(C5): C05006, doi: 10.1029/2011jc007382
    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049, doi: 10.1002/qj.3803
    Holte J, Talley L. 2009. A new algorithm for finding mixed layer depths with applications to Argo Data and Subantarctic Mode Water Formation. Journal of Atmospheric and Oceanic Technology, 26(9): 1920–1939, doi: 10.1175/2009jtecho543.1
    Hoskins B J, Karoly D J. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing. Journal of the Atmospheric Sciences, 38(6): 1179–1196, doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
    Kao H Y, Yu Jinyi. 2009. Contrasting eastern-Pacific and central-Pacific types of ENSO. Journal of Climate, 22(3): 615–632, doi: 10.1175/2008jcli2309.1
    Kara A B, Rochford P A, Hurlburt H E. 2003. Mixed layer depth variability over the global ocean. Journal of Geophysical Research: Oceans, 108(C3): 3079, doi: 10.1029/2000jc000736
    Karoly D J, Hoskins B J. 1983. The steady, linear response of the stratosphere to tropospheric forcing. Quarterly Journal of the Royal Meteorological Society, 109(461): 455–478, doi: 10.1002/qj.49710946103
    Kidson J W. 1999. Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP-NCAR reanalyses. Journal of Climate, 12(2): 2808–2830, doi: 10.1175/1520-0442(1999)012<2808:PMOSHL>2.0.CO;2
    Kug J S, Jin Feifei, An S I. 2009. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. Journal of Climate, 22(6): 1499–1515, doi: 10.1175/2008jcli2624.1
    Kuhlbrodt T, Griesel A, Montoya M, et al. 2007. On the driving processes of the Atlantic meridional overturning circulation. Reviews of Geophysics, 45(2): RG2001, doi: 10.1029/2004rg000166
    L’Heureux M L, Thompson D W J. 2006. Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. Journal of Climate, 19(2): 276–287, doi: 10.1175/JCLI3617.1
    Li Xichen, Cai Wenju, Meehl G A, et al. 2021. Tropical teleconnection impacts on Antarctic climate changes. Nature Reviews Earth & Environment, 2(10): 680–698, doi: 10.1038/s43017-021-00204-5
    Li Qian, England M H. 2020. Tropical Indo-Pacific teleconnections to Southern Ocean mixed layer variability. Geophysical Research Letters, 47(15): e2020GL088466, doi: 10.1029/2020g l088466
    Li Xichen, Gerber E P, Holland D M, et al. 2015a. A Rossby wave bridge from the tropical atlantic to west Antarctica. Journal of Climate, 28(6): 2256–2273, doi: 10.1175/jcli-d-14-00450.1
    Li Xichen, Holland D M, Gerber E P, et al. 2014a. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505(7484): 538–542, doi: 10.1038/nature12945
    Li Xichen, Holland D M, Gerber E P, et al. 2015b. Rossby waves mediate impacts of tropical oceans on west Antarctic Atmospheric Circulation in austral winter. Journal of Climate, 28(20): 8151–8164, doi: 10.1175/jcli-d-15-0113.1
    Li Qian, Lee S, England M H, et al. 2019. Seasonal-to-interannual response of Southern Ocean mixed layer depth to the Southern Annular Mode from a global 1/10° ocean model. Journal of Climate, 32(18): 6177–6195, doi: 10.1175/jcli-d-19-0159.1
    Li Gang, Li Chongyin, Tan Yanke, et al. 2014b. Observed relationship of boreal winter South Pacific Tripole SSTA with Eastern China rainfall during the following boreal spring. Journal of Climate, 27(21): 8094–8106, doi: 10.1175/jcli-d-14-00074.1
    Liu Hailong, Grodsky S A, Carton J A. 2009. Observed subseasonal variability of oceanic barrier and compensated layers. Journal of Climate, 22(22): 6104–6119, doi: 10.1175/2009jcli2974.1
    Luo Jingjia, Zhang Ruochao, Behera S K, et al. 2010. Interaction between El Niño and extreme Indian Ocean Dipole. Journal of Climate, 23(3): 726–742, doi: 10.1175/2009jcli3104.1
    Meehl G A, Arblaster J M, Bitz C M, et al. 2016. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nature Geoscience, 9(8): 590–595, doi: 10.1038/ngeo2751
    Mitchell B G, Brody E A, Holm-Hansen O, et al. 1991. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnology and Oceanography, 36(8): 1662–1677, doi: 10.4319/lo.1991.36.8.1662
    Mo K C, Ghil M. 1987. Statistics and dynamics of persistent anomalies. Journal of the Atmospheric Sciences, 44(5): 877–902, doi: 10.1175/1520-0469(1987)044<0877:SADOPA>2.0.CO;2
    Mo K C, Higgins R W. 1998. The Pacific-South American modes and tropical convection during the Southern Hemisphere winter. Monthly Weather Review, 126(6): 1581–1596, doi: 10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2
    Nardelli B B, Guinehut S, Verbrugge N, et al. 2017. Southern Ocean mixed-layer seasonal and interannual variations from combined satellite and in situ data. Journal of Geophysical Research: Oceans, 122(12): 10042–10060, doi: 10.1002/2017jc 013314
    Nuncio M, Yuan Xiaojun. 2015. The influence of the Indian Ocean Dipole on Antarctic sea ice. Journal of Climate, 28(7): 2682–2690, doi: 10.1175/jcli-d-14-00390.1
    Park J, Oh I S, Kim H C, et al. 2010. Variability of SeaWiFs chlorophyll-a in the southwest Atlantic sector of the Southern Ocean: strong topographic effects and weak seasonality. Deep-Sea Research Part I: Oceanographic Research Papers, 57(4): 604–620, doi: 10.1016/j.dsr.2010.01.004
    Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14): 4407, doi: 10.1029/2002jd 002670
    Ren Hongli, Jin Feifei. 2011. Niño indices for two types of ENSO. Geophysical Research Letters, 38(4): L04704, doi: 10.1029/2010gl 046031
    Rondanelli R, Hatchett B, Rutllant J, et al. 2019. Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica. Geophysical Research Letters, 46(6): 3482–3491, doi: 10.1029/2018gl081475
    Saji N H, Ambrizzi T, Ferraz S E T. 2005. Indian Ocean Dipole mode events and austral surface air temperature anomalies. Dynamics of Atmospheres and Oceans, 39(1/2): 87–101, doi: 10.1016/j.dynatmoce.2004.10.015
    Sallée J B, Speer K G, Rintoul S R. 2010. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nature Geoscience, 3(4): 273–279, doi: 10.1038/ngeo812
    Sarmiento J L, Hughes T M C, Stouffer R J, et al. 1998. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393(6682): 245–249, doi: 10.1038/30455
    Schneider D P, Okumura Y, Deser C. 2012. Observed antarctic interannual climate variability and tropical linkages. Journal of Climate, 25(12): 4048–4066, doi: 10.1175/jcli-d-11-00273.1
    Turner J. 2004. The El Niño-southern oscillation and Antarctica. International Journal of Climatology, 24(1): 1–31, doi: 10.1002/joc.965
    Vivier F, Iudicone D, Busdraghi F, et al. 2010. Dynamics of sea-surface temperature anomalies in the Southern Ocean diagnosed from a 2D mixed-layer model. Climate Dynamics, 34(2/3): 153–184, doi: 10.1007/s00382-009-0724-3
    Wang Lu, Li T, Chen Lin, et al. 2018a. Modulation of the MJO intensity over the equatorial western Pacific by two types of El Niño. Climate Dynamics, 51(1/2): 687–700, doi: 10.1007/s00382-017-3949-6
    Wang Ziqi, Zhang Wenjun, Geng Xin. 2017. Different influences of two types of ENSO on winter temperature and cold extremes in northern China. Acta Meteorologica Sinica (in Chinese), 75(4): 564–580, doi: 10.11676/qxxb2017.038
    Wang Zhongpeng, Zhang Zhaoru, Zhou Meng, et al. 2020. Seasonal linkage of the Southern Hemisphere extratropical climate variability to two types of ENSO. Acta Oceanologica Sinica, 39(1): 63–73, doi: 10.1007/s13131-019-1528-x
    Xiao Xianjun, Wang Dongxiao, Zhou Wen, et al. 2013. Impacts of a wind stress and a buoyancy flux on the seasonal variation of mixing layer depth in the South China Sea. Acta Oceanologica Sinica, 32(9): 30–37, doi: 10.1007/s13131-013-0349-6
    Yeh S W, Kug J S, Dewitte B, et al. 2009. El Niño in a changing climate. Nature, 461(7263): 511–514, doi: 10.1038/nature08316
    Ying Meijia, Liu Hailong, Wang Fuchang, et al. 2019. Spatio-temporal variations of mixed layer depth in Southern Ocean. Oceanologia et Limnologia Sinica (in Chinese), 50(6): 1223–1232, doi: 10.11693/hyhz20190800153
    Yu Jinyi, Kao H Y. 2007. Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. Journal of Geophysical Research: Atmospheres, 112(D13): D13106, doi: 10.1029/2006jd007654
    Zhang Wenjun, Jin Feifei, Li Jianping, et al. 2011. Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. Journal of the Meteorological Society of Japan. Ser. II, 89(5): 563–569, doi: 10.2151/jmsj.2011-510
    Zhang Chao, Li T, Li Shuanglin. 2021. Impacts of CP and EP El Niño events on the Antarctic sea ice in austral spring. Journal of Climate, 34(23): 9327–9348, doi: 10.1175/jcli-d-21-0002.1
    Zhang Wenjun, Mei Xuebin, Geng Xin, et al. 2019. A nonstationary ENSO-NAO relationship due to AMO modulation. Journal of Climate, 32(1): 33–43, doi: 10.1175/jcli-d-18-0365.1
    Zhang Zhaoru, Uotila P, Stössel A, et al. 2018. Seasonal southern hemisphere multi-variable reflection of the southern annular mode in atmosphere and ocean reanalyses. Climate Dynamics, 50(3/4): 1451–1470, doi: 10.1007/s00382-017-3698-6
    Zuo Hao, Balmaseda M A, Tietsche S, et al. 2019. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment. Ocean Science, 15(3): 779–808, doi: 10.5194/os-15-779-2019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (224) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return