Citation: | Yiheng Xie, Xiaoping Rui, Yarong Zou, Heng Tang, Ninglei Ouyang. Mangrove monitoring and extraction based on multi-source remote sensing data: A deep learning method based on SAR and optical image fusion[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2356-1 |
Braun A C. 2021. More accurate less meaningful? A critical physical geographer’s reflection on interpreting remote sensing land-use analyses. Progress in Physical Geography: Earth and Environment, 45(5): 706–735, doi: 10.1177/0309133321991814
|
Cao Jingjing, Leng Wanchun, Liu Kai, et al. 2018. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sensing, 10(1): 89, doi: 10.3390/rs10010089
|
Chen Zhaojun, Zhang Meng, Zhang Huaiqing, et al. 2023. Mapping mangrove using a red-edge mangrove index (REMI) based on Sentinel-2 multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 61: 4409511
|
Darko P O, Kalacska M, Arroyo-Mora J P, et al. 2021. Spectral complexity of hyperspectral images: A new approach for mangrove classification. Remote Sensing, 13(13): 2604, doi: 10.3390/rs13132604
|
de Souza Moreno G M, de Carvalho Júnior O A, de Carvalho O L F, et al. 2023. Deep semantic segmentation of mangroves in Brazil combining spatial, temporal, and polarization data from Sentinel-1 time series. Ocean & Coastal Management, 231: 106381
|
Fu Bolin, Liang Yiyin, Lao Zhinan, et al. 2023. Quantifying scattering characteristics of mangrove species from Optuna-based optimal machine learning classification using multi-scale feature selection and SAR image time series. International Journal of Applied Earth Observation and Geoinformation, 122: 103446, doi: 10.1016/j.jag.2023.103446
|
Fu Chang, Song Xiqiang, Xie Yu, et al. 2022. Research on the spatiotemporal evolution of mangrove forests in the Hainan Island from 1991 to 2021 based on SVM and Res-UNet Algorithms. Remote Sensing, 14(21): 5554, doi: 10.3390/rs14215554
|
Giri C. 2016. Observation and monitoring of mangrove forests using remote sensing: opportunities and challenges. Remote Sensing, 8(9): 783, doi: 10.3390/rs8090783
|
Gonzalez-Perez A, Abd-Elrahman A, Wilkinson B, et al. 2022. Deep and machine learning image classification of coastal wetlands using unpiloted aircraft system multispectral images and Lidar datasets. Remote Sensing, 14(16): 3937, doi: 10.3390/rs14163937
|
Huang Sha, Tang Lina, Hupy J P, et al. 2021. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1): 1–6, doi: 10.1007/s11676-020-01155-1
|
Jia Mingming, Wang Zongming, Wang Chao, et al. 2019. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery. Remote Sensing, 11(17): 2043, doi: 10.3390/rs11172043
|
Kamal M, Phinn S, Johansen K. 2014. Characterizing the spatial structure of mangrove features for optimizing image-based mangrove mapping. Remote Sensing, 6(2): 984–1006, doi: 10.3390/rs6020984
|
Kulkarni S C, Rege P P. 2020. Pixel level fusion techniques for SAR and optical images: a review. Information Fusion, 59: 13–29, doi: 10.1016/j.inffus.2020.01.003
|
Li Jinjin, Zhang Jiacheng, Yang Chao, et al. 2023. Comparative analysis of pixel-level fusion algorithms and a new high-resolution dataset for SAR and optical image fusion. Remote Sensing, 15(23): 5514, doi: 10.3390/rs15235514
|
Lu Ying, Wang Le. 2021. How to automate timely large-scale mangrove mapping with remote sensing. Remote Sensing of Environment, 264: 112584, doi: 10.1016/j.rse.2021.112584
|
Luo Yanmin, Ouyang Yi, Zhang Rencheng, et al. 2017. Multi-feature joint sparse model for the classification of mangrove remote sensing images. ISPRS International Journal of Geo-Information, 6(6): 177, doi: 10.3390/ijgi6060177
|
Mahmoud M I. 2012. Information extraction from paper maps using object oriented analysis (OOA) [dissertation]. Enschede: University of Twente
|
Maurya K, Mahajan S, Chaube N. 2021. Remote sensing techniques: mapping and monitoring of mangrove ecosystem—A review. Complex & Intelligent Systems, 7(6): 2797–2818
|
Purnamasayangsukasih P R, Norizah K, Ismail A A M, et al. 2016. A review of uses of satellite imagery in monitoring mangrove forests. IOP Conference Series: Earth and Environmental Science, 37: 012034, doi: 10.1088/1755-1315/37/1/012034
|
Raghavendra N S, Deka P C. 2014. Support vector machine applications in the field of hydrology: a review. Applied Soft Computing, 19: 372–386, doi: 10.1016/j.asoc.2014.02.002
|
Sandra M C, Rajitha K. 2023. Random forest and support vector machine classifiers for coastal wetland characterization using the combination of features derived from optical data and synthetic aperture radar dataset. Journal of Water & Climate Change, 15(1): 29–49
|
Shen Zhen, Miao Jing, Wang Junjie, et al. 2023. Evaluating feature selection methods and machine learning algorithms for mapping mangrove forests using optical and synthetic aperture radar data. Remote Sensing, 15(23): 5621, doi: 10.3390/rs15235621
|
Su Jiming, Zhang Fupeng, Yu Chuanxiu, et al. 2023. Machine learning: next promising trend for microplastics study. Journal of Environmental Management, 344: 118756, doi: 10.1016/j.jenvman.2023.118756
|
Tian Lei, Wu Xiaocan, Tao Yu, et al. 2023. Review of remote sensing-based methods for forest aboveground biomass estimation: progress, challenges, and prospects. Forests, 14(6): 1086, doi: 10.3390/f14061086
|
Toosi N B, Soffianian A R, Fakheran S, et al. 2019. Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, 19: e00662., doi: 10.1016/j.gecco.2019.e00662
|
Tran T V, Reef R, Zhu Xuan. 2022. A review of spectral indices for mangrove remote sensing. Remote Sensing, 14(19): 4868, doi: 10.3390/rs14194868
|
Twilley R R. 2019. Mangrove wetlands. In: Messina M G, Conner W H, eds. Southern Forested Wetlands. London: Routledge, 445–473
|
Wang Pin, Fan En, Wang Peng. 2021a. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognition Letters, 141: 61–67, doi: 10.1016/j.patrec.2020.07.042
|
Wang Youshao, Gu Jidong. 2021b. Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. International Biodeterioration & Biodegradation, 162: 105248
|
Wei Yidi, Cheng Yongcun, Yin Xiaobin, et al. 2023. Deep learning-based classification of high-resolution satellite images for mangrove mapping. Applied Sciences, 13(14): 8526, doi: 10.3390/app13148526
|
Xie Yiheng, Chen Renxi, Yu Mingge, et al. 2023. Improvement and application of UNet network for avoiding the effect of urban dense high-rise buildings and other feature shadows on water body extraction. International Journal of Remote Sensing, 44(12): 3861–3891, doi: 10.1080/01431161.2023.2229498
|
Xu Chen, Wang Juanle, Sang Yu, et al. 2023a. An effective deep learning model for monitoring mangroves: a case study of the Indus delta. Remote Sensing, 15(9): 2220, doi: 10.3390/rs15092220
|
Xu Mengjie, Sun Chuanwang, Zhan Yanhong, et al. 2023b. Impact and prediction of pollutant on mangrove and carbon stocks: a machine learning study based on urban remote sensing data. Geoscience Frontiers, 15(3): 101665
|
Yang Gang, Huang Ke, Sun Weiwei, et al. 2022. Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove. ISPRS Journal of Photogrammetry and Remote Sensing, 189: 236–254, doi: 10.1016/j.isprsjprs.2022.05.003
|
Yu Mingge, Rui Xiaoping, Zou Yarong, et al. 2023. Research on automatic recognition of mangrove forests based on CU net model. Journal of Oceanography (in Chinese), 45(3): 125–135
|
Zhang Junyao, Yang Xiaomei, Wang Zhihua, et al. 2021. Remote sensing based spatial-temporal monitoring of the changes in coastline mangrove forests in China over the last 40 years. Remote Sensing, 13(10): 1986, doi: 10.3390/rs13101986
|