Citation: | Zhiwei Tian, Caixia Wang, Zipeng Yu, Hailong Liu, Pengfei Lin, Zhuhua Li. Tide simulation in a global eddy-resolving ocean model[J]. Acta Oceanologica Sinica, 2024, 43(9): 1-10. doi: 10.1007/s13131-024-2352-5 |
Ansong J K, Arbic B K, Alford M H, et al. 2017. Semidiurnal internal tide energy fluxes and their variability in a global ocean model and moored observations. Journal of Geophysical Research: Oceans, 122(3): 1882–1900, doi: 10.1002/2016JC012184
|
Ansong J K, Arbic B K, Buijsman M C, et al. 2015. Indirect evidence for substantial damping of low-mode internal tides in the open ocean. Journal of Geophysical Research: Oceans, 120(9): 6057–6071, doi: 10.1002/2015JC010998
|
Arbic B K, Alford M H, Ansong J K, et al. 2018. A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. In: Chassignet E P, Pascual A, Tintoré J, et al, eds. New Frontiers in Operational Oceanography. GODAE OceanView, 308–334
|
Arbic B K, Garner S T, Hallberg R W, et al. 2004. The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Research Part II: Topical Studies in Oceanography, 51(25/26): 3069–3101, doi: 10.1016/j.dsr2.2004.09.014
|
Arbic B K, Richman J G, Shriver J F, et al. 2012. Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25(2): 20–29, doi: 10.5670/oceanog.2012.38
|
Arbic B K, Wallcraft A J, Metzger E J. 2010. Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32(3/4): 175–187, doi: 10.1016/j.ocemod.2010.01.007
|
Buijsman M C, Ansong J K, Arbic B K, et al. 2016. Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. Journal of Physical Oceanography, 46(5): 1399–1419., doi: 10.1175/JPO-D-15-0074.1
|
Buijsman M C, Stephenson G R, Ansong J K, et al. 2020. On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. Ocean Modelling, 152: 101656, doi: 10.1016/j.ocemod.2020.101656
|
Carrere L, Arbic B K, Dushaw B, et al. 2021. Accuracy assessment of global internal-tide models using satellite altimetry. Ocean Science, 17(1): 147–180, doi: 10.5194/os-17-147-2021
|
Codiga D L. 2011. Unified tidal analysis and prediction using the UTide matlab functions. Technical Report 2011-01. Narragansett: Graduate School of Oceanography, University of Rhode Island, 59
|
Egbert G D. 1997. Tidal data inversion: interpolation and inference. Progress in Oceanography, 40(1–4): 53–80, doi: 10.1016/S0079-6611(97)00023-2
|
Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of Barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204, doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
|
Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788): 775–778, doi: 10.1038/35015531
|
Fisheries and Oceans Canada. 2017. Table for the astronomical argument V+U. https://www.dfo-mpo.gc.ca/science/data-donnees/tidal-marees/argument-u-v-eng.html [2017-01-26/2023-09-15]
|
Fisheries and Oceans Canada. 2018. Table of values for the node factor f. https://www.dfo-mpo.gc.ca/science/data-donnees/tidal-marees/facteur-node-factor-eng.html[2018-02-27/2023-09-15]
|
Hendershott M C. 1972. The effects of solid earth deformation on global ocean tides. Geophysical Journal of the Royal Astronomical Society, 29(4): 389–402, doi: 10.1111/j.1365-246X.1972.tb06167.x
|
Jayne S R. 2009. The impact of abyssal mixing parameterizations in an ocean general circulation model. Journal of Physical Oceanography, 39(7): 1756–1775, doi: 10.1175/2009JPO4085.1
|
Jayne S R, St. Laurent L C. 2001. Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28(5): 811–814, doi: 10.1029/2000GL012044
|
Jin Jiangbo, Guo Run, Zhang Minghua, et al. 2022. Formulation of a new explicit tidal scheme in revised LICOM2.0. Geoscientific Model Development, 15(10): 4259–4273, doi: 10.5194/gmd-15-4259-2022
|
Kostov Y, Armour K C, Marshall J. 2014. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophysical Research Letters, 41(6): 2108–2116, doi: 10.1002/2013GL058998
|
Li Yiwen, Liu, Hailong, Ding Mengrong, et al. 2020. Eddy-resolving simulation of CAS-LICOM3 for phase 2 of the ocean model intercomparison project. Advances in Atmospheric Sciences, 37(10): 1067–1080, doi: 10.1007/s00376-020-0057-z
|
Li Zhuhua, von Storch J S. 2020. M2 internal-tide generation in STORMTIDE2. Journal of Geophysical Research: Oceans, 125(8): e2019JC015453, doi: 10.1029/2019JC015453
|
Logemann K, Linardakis L, Korn P, et al. 2021. Global tide simulations with ICON-O: testing the model performance on highly irregular meshes. Ocean Dynamics, 71(1): 43–57, doi: 10.1007/s10236-020-01428-7
|
Marshall J, Speer K. 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5(3): 171–180, doi: 10.1038/ngeo1391
|
Melet A, Hallberg R, Legg S, et al. 2013. Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. Journal of Physical Oceanography, 43(3): 602–615, doi: 10.1175/JPO-D-12-055.1
|
Müller M, Arbic B K, Richman J G, et al. 2015. Toward an internal gravity wave spectrum in global ocean models. Geophysical Research Letters, 42(9): 3474–3481, doi: 10.1002/2015GL063365
|
Müller M, Cherniawsky J Y, Foreman M G G, et al. 2012. Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling. Geophysical Research Letters, 39(19): l19607
|
Müller M, Cherniawsky J Y, Foreman M G G, et al. 2014. Seasonal variation of the M2 tide. Ocean Dynamics, 64(2): 159–177, doi: 10.1007/s10236-013-0679-0
|
Müller M, Haak H, Jungclaus J H, et al. 2010. The effect of ocean tides on a climate model simulation. Ocean Modelling, 35(4): 304–313, doi: 10.1016/j.ocemod.2010.09.001
|
Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Research Part I: Oceanographic Research Papers, 45(12): 1977–2010, doi: 10.1016/S0967-0637(98)00070-3
|
Murray R J. 1996. Explicit generation of orthogonal grids for ocean models. Journal of Computational Physics, 126(2): 251–273, doi: 10.1006/jcph.1996.0136
|
National Centers for Environmental Information. 2006. 2-Minute Gridded Global Relief Data (ETOPO2) v2. Beijing, China: National Geophysical Data Center, National Centers for Environmental Information, doi: 10.7289/V5J1012Q
|
Niwa Y, Hibiya T. 2014. Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Modelling, 80: 59–73, doi: 10.1016/j.ocemod.2014.05.003
|
Peng Shiqiu, Liao Jiawen, Wang Xiaowei, et al. 2021. Energetics-based estimation of the diapycnal mixing induced by internal tides in the Andaman Sea. Journal of Geophysical Research: Oceans, 126(4): e2020JC016521, doi: 10.1029/2020JC016521
|
Ponchaut F, Lyard F, Le Provost C. 2001. An analysis of the tidal signal in the WOCE Sea level dataset. Journal of Atmospheric and Oceanic Technology, 18(1): 77–91, doi: 10.1175/1520-0426(2001)018<0077:AAOTTS>2.0.CO;2
|
Pugh D T. 1996. Tides, Surges and Mean Sea-Level (Reprinted with Corrections). Chichester: John Wiley & Sons Ltd, 59–140
|
Rocha C B, Chereskin T K, Gille S T, et al. 2016a. Mesoscale to submesoscale wavenumber spectra in drake passage. Journal of Physical Oceanography, 46(2): 601–620, doi: 10.1175/JPO-D-15-0087.1
|
Rocha C B, Gille S T, Chereskin T K, et al. 2016b. Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophysical Research Letters, 43(21): 11304–11311
|
Saenko O A, Merryfield W J. 2005. On the effect of topographically enhanced mixing on the global ocean circulation. Journal of Physical Oceanography, 35(5): 826–834, doi: 10.1175/JPO2722.1
|
Savage A C, Arbic B K, Alford M H, et al. 2017a. Spectral decomposition of internal gravity wave sea surface height in global models. Journal of Geophysical Research: Oceans, 122(10): 7803–7821, doi: 10.1002/2017JC013009
|
Savage A C, Arbic B K, Richman J G, et al. 2017b. Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. Journal of Geophysical Research: Oceans, 122(3): 2519–2538, doi: 10.1002/2016JC012331
|
Schiller A. 2004. Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region. Ocean Modelling, 6(1): 31–49, doi: 10.1016/S1463-5003(02)00057-4
|
Schiller A, Fiedler R. 2007. Explicit tidal forcing in an ocean general circulation model. Geophysical Research Letters, 34(3): L03611
|
Shum C K, Woodworth P L, Andersen O B, et al. 1997. Accuracy assessment of recent ocean tide models. Journal of Geophysical Research: Oceans, 102(C11): 25173–25194, doi: 10.1029/97JC00445
|
Simmons H L, Jayne S R, St. Laurent L C, et al. 2004. Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6(3/4): 245–263, doi: 10.1016/S1463-5003(03)00011-8
|
Siyanbola O Q, Buijsman M C, Delpech A, et al. 2023. Remote internal wave forcing of regional ocean simulations near the U.S. West Coast. Ocean Modelling, 181: 102154, doi: 10.1016/j.ocemod.2022.102154
|
Song Pengyang, Sidorenko D, Scholz P, et al. 2023. The tidal effects in the finite-volumE sea ice–ocean model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing. Geoscientific Model Development, 16(1): 383–405, doi: 10.5194/gmd-16-383-2023
|
St. Laurent L C, Simmons H L Jayne S R. 2002. Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters, 29(23): 21
|
Stammer D, Ray R D, Andersen O B, et al. 2014. Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3): 243–282, doi: 10.1002/2014RG000450
|
Talley L D. 2013. Closure of the global overturning circulation through the Indian, Pacific, and southern oceans: schematics and transports. Oceanography, 26(1): 80–97, doi: 10.5670/oceanog.2013.07
|
Thomas M, Sündermann J, Maier-Reimer E. 2001. Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophysical Research Letters, 28(12): 2457–2460, doi: 10.1029/2000GL012234
|
Tsujino H, Urakawa S, Nakano H, et al. 2018. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Modelling, 130: 79–139, doi: 10.1016/j.ocemod.2018.07.002
|
von Storch J S, Hertwig E, Lüschow V, et al. 2023. Open-ocean tides simulated by ICON-O, version icon-2.6. 6. Geoscience Model Development, 16(17): 5179–5196, doi: 10.5194/gmd-16-5179-2023
|
Wang Xiaowei, Peng Shiqiu, Liu Zhiyu, et al. 2016. Tidal mixing in the South China Sea: an estimate based on the internal tide energetics. Journal of Physical Oceanography, 46(1): 107–124, doi: 10.1175/JPO-D-15-0082.1
|
Yu Yi, Liu Hailong, Lan Jian. 2016. The influence of explicit tidal forcing in a climate ocean circulation model. Acta Oceanologica Sinica, 35(9): 42–50, doi: 10.1007/s13131-016-0931-9
|
Yu Zipeng, Liu Hailong, Lin Pengfei. 2017. A numerical study of the influence of tidal mixing on Atlantic Meridional Overturning Circulation (AMOC) simulation. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 1087–1100
|
Yu Yi, Liu Hailong, Lin Pengfei, et al. 2020. The impact of oceanic processes on the transient climate response: a tidal forcing experiment. Acta Oceanologica Sinica, 39(1): 52–62, doi: 10.1007/s13131-019-1466-0
|
Zuo Juncheng, Du Ling, Chen Meixiang, et al. 2018. Analysis Method of Ocean Hydrological Environmental Factors (in Chinese). Beijing, China: Science Press, 249–252
|