Turn off MathJax
Article Contents
Kanglin Chen, Yushi Li, Jianzhou Gong, Gangte Lin. Scale effect of coastal landscape pattern stability and driving forces: a case study of Guangdong Province, China[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2351-6
Citation: Kanglin Chen, Yushi Li, Jianzhou Gong, Gangte Lin. Scale effect of coastal landscape pattern stability and driving forces: a case study of Guangdong Province, China[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2351-6

Scale effect of coastal landscape pattern stability and driving forces: a case study of Guangdong Province, China

doi: 10.1007/s13131-024-2351-6
Funds:  The Natural Science Foundation of China under contract Nos 42201104 and 42071123; China Postdoctoral Research Foundation under contract No. 2023M730758.
More Information
  • Corresponding author: gongjzh66@126.com
  • Received Date: 2023-11-03
  • Accepted Date: 2024-05-07
  • Available Online: 2024-07-23
  • The long-term dynamic evolution and underlying mechanisms of coastal landscape pattern stability, driven by strong anthropogenic interference and consequently climate change, are topics of major interest in national and international scientific research. Guangdong Province, located in southeastern China, has been undergoing rapid urbanization over several decades. In this study, we quantitatively determined the scale threshold characteristics of coastal landscape pattern stability in Guangdong Province, from the dual perspective of spatial heterogeneity and spatial autocorrelation. An analysis of the spatiotemporal evolution of the coastal landscape was conducted after the optical scale was determined. Then, we applied the geodetector statistical method to quantitatively explore the mechanisms underlying coastal landscape pattern stability. Based on the inflection point of landscape metrics and the maximum value of the Moran I index, the optimal scale for analyzing coastal landscape pattern stability in Guangdong Province was 240 m × 240 m. Within the past several decades, coastal landscape pattern stability increased slightly and then decreased, with a turning point around 2005. The most significant variations in coastal landscape pattern stability were observed in the transition zone of rural-urban expansion. A q-statistics analysis showed that the explanatory power of paired factors was greater than that of a single driving factor; the paired factors with the greatest impact on coastal landscape pattern stability in Guangdong Province were the change in gross industrial output and change in average annual precipitation from 2010 to 2015, based on a q value of 0.604. These results will contribute to future efforts to achieve sustainable coastal development and provide a scientific basis and technical support for the rational planning and utilization of resources in large estuarine areas, including marine disaster prevention and seawall ecological restoration.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (59) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return