Citation:  Zhigao Chen, Yan Zong, Zihao Wu, Zhiyu Kuang, Shengping Wang. Prediction of discharge in a tidal river using the LSTMbased sequencetosequence models[J]. Acta Oceanologica Sinica. doi: 10.1007/s1313102423436 
Amanambu A C, Mossa J, Chen YinHsuen. 2022. Hydrological drought forecasting using a deep transformer model. Water, 14(22): 3611

Anshuka A, Chandra R, Buzacott A J V, et al. 2022. Spatio temporal hydrological extreme forecasting framework using LSTM deep learning model. Stochastic Environmental Research and Risk Assessment, 36(10): 3467–3485

Bai Longhu, Xu Hang. 2021. Accurate estimation of tidal level using bidirectional long shortterm memory recurrent neural network. Ocean Engineering, 235: 108765

Cai Huayang, Li Bo, Garel E, et al. 2023. A datadriven model to quantify the impact of river discharge on tideriver dynamics in the Yangtze River estuary. Journal of Hydrology, 620: 129411

Cho K, Van Merriënboer B, Gulcehre C, et al. 2014. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha The State of Qatar: ACL, 1724–1734

Dennis R E, Long E E. 1971. A user’s guide to a computer program for harmonic analysis of data at tidal frequencies. NOAA NOS, 41: 3–11

Foreman M G G. 1977. Manual for tidal heights analysis and prediction. Pacific Marine Science Report. Sidney, B C, Canada: Institute of Ocean Sciences, Patricia Bay, 77–10

Foreman M G G, Henry R F. 1989. The harmonic analysis of tidal model time series. Advances in Water Resources, 12(3): 109–120

Gan Min, Chen Yongping, Pan Haidong, et al. 2024. Study on the spatiotemporal variation of the Yangtze estuarine tidal species. Estuarine, Coastal and Shelf Science, 298: 108637

Harris D L, Pore N A, Cummings R A. 2015. Tide and tidal current prediction by high speed digital computer. The International Hydrographic Review, 42(1): 95–103

Hidayat H, Hoitink A J F, Sassi M G, et al. 2014. Prediction of discharge in a tidal river using artificial neural networks. Journal of Hydrologic Engineering, 19(8): 04014006

Hochreiter S, Schmidhuber J. 1997. Long shortterm memory. Neural Computation, 9(8): 1735–1780

Jain M, Saihjpal V, Singh N, et al. 2022. An overview of variants and advancements of PSO algorithm. Applied Sciences, 12(17): 8392

Ji Zhong, Xiong Kailin, Pang Yanwei, et al. 2020. Video summarization with attentionbased encoder–decoder networks. IEEE Transactions on Circuits and Systems for Video Technology, 30(6): 1709–1717

Kao IFeng, Zhou Yanlai, Chang LiChiu, et al. 2020. Exploring a long shortterm memory based encoderdecoder framework for multistepahead flood forecasting. Journal of Hydrology, 583: 124631

Kennedy J, Eberhart R. 1995. Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks. Perth: IEEE, 1942–1948

Kratzert F, Herrnegger M, Klotz D, et al. 2019. NeuralHydrology – interpreting LSTMs in hydrology. In: Samek W, Montavon G, Vedaldi A, et al, eds. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Cham: Springer, 347–362

Kratzert F, Klotz D, Brenner C, et al. 2018. Rainfall–runoff modelling using long shortterm memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11): 6005–6022

Lee T L. 2004. Backpropagation neural network for longterm tidal predictions. Ocean Engineering, 31(2): 225–238

Lees T, Reece S, Kratzert F, et al. 2022. Hydrological concept formation inside long shortterm memory (LSTM) networks. Hydrology and Earth System Sciences, 26(12): 3079–3101

Matte P, Jay D A, Zaron E D. 2013. Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides. Journal of Atmospheric and Oceanic Technology, 30(3): 569–589

Olah C. 2015. Understanding LSTM networks. https://colah.github.io/posts/201508UnderstandingLSTMs/[201508]

Pan Haidong, Jiao Shengyi, Xu Tengfei, et al. 2022. Investigation of tidal evolution in the Bohai Sea using the combination of satellite altimeter records and numerical models. Estuarine, Coastal and Shelf Science, 279: 108140

Pan Haidong, Lv Xianqing, Wang Yingying, et al. 2018. Exploration of tidalfluvial interaction in the columbia river estuary using S_TIDE. Journal of Geophysical Research: Oceans, 123(9): 6598–6619

Pan Haidong, Xu Tengfei, Wei Zexun. 2023. A modified tidal harmonic analysis model for shortterm water level observations. Ocean Modelling, 186: 102251

Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8): 929–937

Rumelhart D E, Hinton G E, Williams R J. 1986. Learning representations by backpropagating errors. Nature, 323(6088): 533–536

Sahoo B B, Jha R, Singh A, et al. 2019. Long shortterm memory (LSTM) recurrent neural network for lowflow hydrological time series forecasting. Acta Geophysica, 67(5): 1471–1481

Shin M J, Moon S H, Kang K G, et al. 2020. Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long shortterm memory network. Hydrology, 7(3): 64

Sutskever I, Vinyals O, Le Q V. 2014. Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 3104–3112

Yin Hanlin, Guo Zilong, Zhang Xiuwei, et al. 2021a. Runoff predictions in ungauged basins using sequencetosequence models. Journal of Hydrology, 603: 126975

Yin Hanlin, Zhang Xiuwei, Wang Fandu, et al. 2021b. Rainfallrunoff modeling using LSTMbased multistatevector sequencetosequence model. Journal of Hydrology, 598: 126378

Yuan Xiaohui, Chen Chen, Lei Xiaohui, et al. 2018. Monthly runoff forecasting based on LSTM–ALO model. Stochastic Environmental Research and Risk Assessment, 32(8): 2199–2212

Zhang E F, Savenije H H G, Chen S L, et al. 2012. An analytical solution for tidal propagation in the Yangtze Estuary, China. Hydrology and Earth System Sciences, 16(9): 3327–3339

Zhang Min, Townend I, Zhou Yunxuan, et al. 2016. Seasonal variation of river and tide energy in the Yangtze Estuary, China. Earth Surface Processes and Landforms, 41(1): 98–116

Zhao Jianhu, Chen Zhigao, Zhang Hongmei, et al. 2016. Multiprofile discharge estimation in the tidal reach of Yangtze Estuary. Journal of Hydraulic Engineering, 142(12): 04016056
