Citation: | Zhigao Chen, Yan Zong, Zihao Wu, Zhiyu Kuang, Shengping Wang. Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2343-6 |
Amanambu A C, Mossa J, Chen Yin-Hsuen. 2022. Hydrological drought forecasting using a deep transformer model. Water, 14(22): 3611
|
Anshuka A, Chandra R, Buzacott A J V, et al. 2022. Spatio temporal hydrological extreme forecasting framework using LSTM deep learning model. Stochastic Environmental Research and Risk Assessment, 36(10): 3467–3485
|
Bai Longhu, Xu Hang. 2021. Accurate estimation of tidal level using bidirectional long short-term memory recurrent neural network. Ocean Engineering, 235: 108765
|
Cai Huayang, Li Bo, Garel E, et al. 2023. A data-driven model to quantify the impact of river discharge on tide-river dynamics in the Yangtze River estuary. Journal of Hydrology, 620: 129411
|
Cho K, Van Merriënboer B, Gulcehre C, et al. 2014. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha The State of Qatar: ACL, 1724–1734
|
Dennis R E, Long E E. 1971. A user’s guide to a computer program for harmonic analysis of data at tidal frequencies. NOAA NOS, 41: 3–11
|
Foreman M G G. 1977. Manual for tidal heights analysis and prediction. Pacific Marine Science Report. Sidney, B C, Canada: Institute of Ocean Sciences, Patricia Bay, 77–10
|
Foreman M G G, Henry R F. 1989. The harmonic analysis of tidal model time series. Advances in Water Resources, 12(3): 109–120
|
Gan Min, Chen Yongping, Pan Haidong, et al. 2024. Study on the spatiotemporal variation of the Yangtze estuarine tidal species. Estuarine, Coastal and Shelf Science, 298: 108637
|
Harris D L, Pore N A, Cummings R A. 2015. Tide and tidal current prediction by high speed digital computer. The International Hydrographic Review, 42(1): 95–103
|
Hidayat H, Hoitink A J F, Sassi M G, et al. 2014. Prediction of discharge in a tidal river using artificial neural networks. Journal of Hydrologic Engineering, 19(8): 04014006
|
Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735–1780
|
Jain M, Saihjpal V, Singh N, et al. 2022. An overview of variants and advancements of PSO algorithm. Applied Sciences, 12(17): 8392
|
Ji Zhong, Xiong Kailin, Pang Yanwei, et al. 2020. Video summarization with attention-based encoder–decoder networks. IEEE Transactions on Circuits and Systems for Video Technology, 30(6): 1709–1717
|
Kao I-Feng, Zhou Yanlai, Chang Li-Chiu, et al. 2020. Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting. Journal of Hydrology, 583: 124631
|
Kennedy J, Eberhart R. 1995. Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks. Perth: IEEE, 1942–1948
|
Kratzert F, Herrnegger M, Klotz D, et al. 2019. NeuralHydrology – interpreting LSTMs in hydrology. In: Samek W, Montavon G, Vedaldi A, et al, eds. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Cham: Springer, 347–362
|
Kratzert F, Klotz D, Brenner C, et al. 2018. Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11): 6005–6022
|
Lee T L. 2004. Back-propagation neural network for long-term tidal predictions. Ocean Engineering, 31(2): 225–238
|
Lees T, Reece S, Kratzert F, et al. 2022. Hydrological concept formation inside long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 26(12): 3079–3101
|
Matte P, Jay D A, Zaron E D. 2013. Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river tides. Journal of Atmospheric and Oceanic Technology, 30(3): 569–589
|
Olah C. 2015. Understanding LSTM networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/[2015-08]
|
Pan Haidong, Jiao Shengyi, Xu Tengfei, et al. 2022. Investigation of tidal evolution in the Bohai Sea using the combination of satellite altimeter records and numerical models. Estuarine, Coastal and Shelf Science, 279: 108140
|
Pan Haidong, Lv Xianqing, Wang Yingying, et al. 2018. Exploration of tidal-fluvial interaction in the columbia river estuary using S_TIDE. Journal of Geophysical Research: Oceans, 123(9): 6598–6619
|
Pan Haidong, Xu Tengfei, Wei Zexun. 2023. A modified tidal harmonic analysis model for short-term water level observations. Ocean Modelling, 186: 102251
|
Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8): 929–937
|
Rumelhart D E, Hinton G E, Williams R J. 1986. Learning representations by back-propagating errors. Nature, 323(6088): 533–536
|
Sahoo B B, Jha R, Singh A, et al. 2019. Long short-term memory (LSTM) recurrent neural network for low-flow hydrological time series forecasting. Acta Geophysica, 67(5): 1471–1481
|
Shin M J, Moon S H, Kang K G, et al. 2020. Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network. Hydrology, 7(3): 64
|
Sutskever I, Vinyals O, Le Q V. 2014. Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 3104–3112
|
Yin Hanlin, Guo Zilong, Zhang Xiuwei, et al. 2021a. Runoff predictions in ungauged basins using sequence-to-sequence models. Journal of Hydrology, 603: 126975
|
Yin Hanlin, Zhang Xiuwei, Wang Fandu, et al. 2021b. Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model. Journal of Hydrology, 598: 126378
|
Yuan Xiaohui, Chen Chen, Lei Xiaohui, et al. 2018. Monthly runoff forecasting based on LSTM–ALO model. Stochastic Environmental Research and Risk Assessment, 32(8): 2199–2212
|
Zhang E F, Savenije H H G, Chen S L, et al. 2012. An analytical solution for tidal propagation in the Yangtze Estuary, China. Hydrology and Earth System Sciences, 16(9): 3327–3339
|
Zhang Min, Townend I, Zhou Yunxuan, et al. 2016. Seasonal variation of river and tide energy in the Yangtze Estuary, China. Earth Surface Processes and Landforms, 41(1): 98–116
|
Zhao Jianhu, Chen Zhigao, Zhang Hongmei, et al. 2016. Multiprofile discharge estimation in the tidal reach of Yangtze Estuary. Journal of Hydraulic Engineering, 142(12): 04016056
|