Turn off MathJax
Article Contents
Yuting Zhang, Ruanni Chen, Zhiqiang Chen, Xiaoyu Fu, Ziyi Wu, Jinwan Chen, Lingtian Xie, Humin Zong, Jingli Mu. Dietary exposure to sulfamethazine, nanoplastics and their binary mixture disrupts the spermatogenesis of marine medaka (Oryzias melastigma)[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2289-8
Citation: Yuting Zhang, Ruanni Chen, Zhiqiang Chen, Xiaoyu Fu, Ziyi Wu, Jinwan Chen, Lingtian Xie, Humin Zong, Jingli Mu. Dietary exposure to sulfamethazine, nanoplastics and their binary mixture disrupts the spermatogenesis of marine medaka (Oryzias melastigma)[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2289-8

Dietary exposure to sulfamethazine, nanoplastics and their binary mixture disrupts the spermatogenesis of marine medaka (Oryzias melastigma)

doi: 10.1007/s13131-024-2289-8
Funds:  The National Natural Science Foundation of China under contract No. 42106119; the Department of Science and Technology of Fujian Province under contract Nos 2022J02052, 2020J05175 and 2020J05178; the Fujian Provincial Department of Ocean and Fisheries under contract No. FJHJF-L-2022-12; the Yancheng fishery high quality development project under contract No. YCSCYJ2021023).
More Information
  • In the coastal environment, the co-occurrence of antibiotic and nanoplastic pollution is common. Investigating their individual and combined toxicity to marine organisms is of great necessity. In the present study, the reproductive toxicity of sulfamethazine (SMZ) and nanoplastics (polystyrene, PS) via the dietary route on the spermatogenesis of marine medaka (Oryzias melastigma) was examined. After 30 days of dietary exposure, SMZ alone decreased the gonadosomatic index (GSI) value (~ 35%) and the proportion of undifferentiated type A spermatogonia (Aund) (~ 40%), probably by disrupting the testicular sex hormone production, the spermatogenesis-related growth factor network and the balance of apoptosis. Individual exposure to PS did not affect the GSI value or the proportions of germ cells at different developmental stages, but dysregulated the expression of several spermatogenesis-related genes. Interestingly, the presence of PS alleviated the decreased GSI value caused by SMZ. This alleviation effect was achieved by enhancing the spermatogonia differentiation instead of reversing the suppressed self-renewal of Aund, suggesting that the mixture of PS and SMZ could cause reproductive effects in a different way. These findings expand our knowledge of threats of ubiquitous antibiotic and nanoplastic pollution to fish reproduction and population.
  • These authors contributed equally to this work.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (99) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return