Volume 42 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Runxuan Yan, Xiaobo Wang, Songyao Peng, Qingxi Han. Distribution pattern of macrobenthic assemblages along a salinity gradient in the Hangzhou Bay and its adjacent waters[J]. Acta Oceanologica Sinica, 2023, 42(9): 79-89. doi: 10.1007/s13131-022-2119-9
Citation: Runxuan Yan, Xiaobo Wang, Songyao Peng, Qingxi Han. Distribution pattern of macrobenthic assemblages along a salinity gradient in the Hangzhou Bay and its adjacent waters[J]. Acta Oceanologica Sinica, 2023, 42(9): 79-89. doi: 10.1007/s13131-022-2119-9

Distribution pattern of macrobenthic assemblages along a salinity gradient in the Hangzhou Bay and its adjacent waters

doi: 10.1007/s13131-022-2119-9
Funds:  The National Natural Science Foundation of China under contract Nos 42076156 and 41676139; the K.C. Wong Magna Fund in Ningbo University.
More Information
  • Corresponding author: E-mail: hanqingxi@nbu.edu.cn
  • Received Date: 2022-03-04
  • Accepted Date: 2022-09-16
  • Available Online: 2023-10-11
  • Publish Date: 2023-09-01
  • It is widely acknowledged that the distribution of macrobenthos is affected by salinity, but the degree of influence varies in different areas. To explore the distribution pattern of macrobenthic assemblages in the Hangzhou Bay, 12 stations were sampled to collect macrobenthos and the corresponding bottom water. Changes in the general characteristics of macrobenthos along the salinity gradient in the Hangzhou Bay and its adjacent waters were considered. Three dominant species were identified, including the polychaetes Sternaspis chinensis, the crustacea Oratosquilla oratoria and the echinoderm Ophiuroglypha kinbergi. And the macrobenthic assemblages showed a zonal distribution along with the salinity change. The correlation analyses showed that salinity, depth, temperature, suspended solids and dissolved oxygen had concurrent significant correlations with carnivorous group, Margalef species richness (d), Brillouin index (H) and Shannon-Wiener diversity index (H’). In light of the strong correlation between salinity and Changjiang River diluted water, which produces considerable disturbances by freshwater inflows, the deposition of suspended solids and the resuspension of seabed sediments, the combined environmental disturbances, instead of salinity alone, should be adopted to explain the zonation distribution pattern of macrobenthic assemblages.
  • loading
  • Armonies W. 2021. Who lives where? Macrobenthic species distribution over sediment types and depth classes in the eastern North Sea. Helgoland Marine Research, 75: 8. doi: 10.1186/s10152-021-00552-1
    Bao Cong, Huang Bei, Shao Junbo, et al. 2021. Spatial and temporal distribution of toxic compounds in sediments and potential ecological effects on macrobenthic faunal species in the Hangzhou Bay from 2003 to 2015. Marine Pollution Bulletin, 172: 112816. doi: 10.1016/j.marpolbul.2021.112816
    Bassindale R. 1943. A comparison of the varying salinity conditions of the tees and Severn estuaries. The Journal of Animal Ecology, 12(1): 1–10. doi: 10.2307/1407
    Carlson J K, Randall T A, Mroczka M E. 1997. Feeding habits of winter flounder (Pleuronectes americanus) in a habitat exposed to anthropogenic distribution. Journal of Northwest Atlantic Fishery Science, 21: 65–73. doi: 10.2960/J.v21.a5
    Chai Xueliang, Zhang Yongpu, Xuan Ying, et al. 2008. Effects of several environmental factors on Siliqua minima. Journal of Marine Sciences (in Chinese), 26(1): 45–51
    Chainho P, Costa J L, Chaves M L, et al. 2006. Seasonal and spatial patterns of distribution of subtidal benthic invertebrate communities in the Mondego River, Portugal—A Poikilohaline Estuary. Hydrobiologia, 555(1): 59–74. doi: 10.1007/s10750-005-1132-2
    Chen Jianqin, Hu Dongfang, Zhang Chenling, et al. 2018. Temporal and spatial changes of macrobenthos community in the regions frequently occurring black water aggregation in Lake Taihu. Scientific Reports, 8: 5712. doi: 10.1038/s41598-018-24058-y
    Compilation Committee of Chinese Gulf. 1993. Gulf of China (Volume 5): Gulf in Shanghai and northern Zhejiang Province (in Chinese). Beijing: Chain Ocean Press, 51–67
    Cornelisen C, Jiang Weimin, Griffiths R. 2011. Interpreting Northland’s Coastal Water Quality Monitoring Results Under Different Tide Conditions. Cawthron: Prepared for Northland Regional Coucil
    Davies-Colley R J, Smith D G. 2001. Turbidity suspended sediment, and water clarity: A review. Journal of the American Water Resources Association, 37(5): 1085–1101. doi: 10.1111/j.1752-1688.2001.tb03624.x
    De Villiers C, Hodgson A, Forbes A. 1999. Studies on estuarine macroinvertebrates. In: Estuaries of South Africa. Cambridge: Cambridge University Press, 167–208
    Dittmann S, Baring R, Baggalley S, et al. 2015. Drought and flood effects on macrobenthic communities in the estuary of Australia’s largest river system. Estuarine, Coastal and Shelf Science, 165: 36–51
    Donadi S, Eriksson B K, Lettmann K A, et al. 2015. The body-size structure of macrobenthos changes predictably along gradients of hydrodynamic stress and organic enrichment. Marine Biology, 162: 675–685. doi: 10.1007/s00227-015-2614-z
    Dong Yongfa. 1991. Grain size features of bed material and sedimentary source in the Hangzhou Bay. Shanghai Geology, 39(3): 44–51
    Elliott M, Whitfield A K. 2011. Challenging paradigms in estuarine ecology and management. Estuarine, Coastal and Shelf Science, 94(4): 306–314
    Fan Wei, Song Jinbao. 2014. A numerical study of the seasonal variations of nutrients in the Changjiang River Estuary and its adjacent sea area. Ecological Modelling, 291: 69–81. doi: 10.1016/j.ecolmodel.2014.07.026
    Farrow G E, Syvitski J P M, Tunnicliffe V. 1983. Suspended particulate loading on the macrobenthos in a highly turbid fjord: Knight Inlet, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 40(S1): S273–S288. doi: 10.1139/f83-289
    Fauchald K, Jumars P A. 1979. The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology Annual Review, 17: 193–284
    Gaston G R, Rakocinski C F, Brown S S, et al. 1998. Trophic function in estuaries: response of macrobenthos to natural and contaminant gradients. Marine and Freshwater Research, 49(8): 833–846. doi: 10.1071/MF97089
    Ghasemi A F, Taheri M, Foshtomi M Y, et al. 2016. Gorgan Bay: a microcosm for study on macrobenthos species-environment relationships in the southeastern Caspian Sea. Acta Oceanologica Sinica, 35(4): 82–88. doi: 10.1007/s13131-015-0728-2
    Hacunda J S. 1981. Trophic relationships among demersal fishes in a coastal area of the Gulf of Maine. Fishery Bulletin, 79(4): 775–788
    Hobbie J E. 2000. Estuarine Science: A Synthetic Approach to Research and Practice. Washington, DC: Island Press, 179–187
    Holland A F, Shaughnessy A T, Hiegel M H. 1987. Long-term variation in mesohaline Chesapeake Bay macrobenthos: spatial and temporal patterns. Estuaries, 10(3): 227–245. doi: 10.2307/1351851
    Hu Haoyan, Tang Jingliang, Li Qiuli, et al. 2006. Studies on benthic ecology in Zhejiang coastal waters. Journal of Marine Sciences (in Chinese), 24(3): 76–89
    Izegaegbe J I, Vivier L, Mzimela H M M. 2020. Macrobenthic community structure of the Mhlathuze Estuary, a permanently open estuarine embayment in KwaZulu-Natal, South Africa. African Journal of Aquatic Science, 45(1–2): 95–107. doi: 10.2989/16085914.2020.1719818
    Jia Haibo, Tang Jingliang, Hu Haoyan. 2014. The variation tendency of biodiversity and cause analysis in the Hangzhou Bay from 1992 to 2012. Haiyang Xuebao (in Chinese), 36(12): 111–118
    Kaczmarek H, Włodarska-Kowalczuk M, Legeżyńska J, et al. 2005. Shallow sublittoral macrozoobenthos in Kongsfjord, West Spitsbergen, Svalbard. Polish Polar Research, 26(2): 137–155
    Lawler D M, Petts G E, Foster I D L, et al. 2006. Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK. Science of the Total Environment, 360(1–3): 109–126. doi: 10.1016/j.scitotenv.2005.08.032
    Le Bris H, Glémarec M. 1996. Marine and brackish ecosystems of South Brittany (Lorient and Vilaine Bays) with particular reference to the effect of the Turbidity Maxima. Estuarine, Coastal and Shelf Science, 42(6): 737–753
    Li Lina, Chen Zhenlou, Xu Shiyuan, et al. 2006. Temporal and spatial distribution characteristics and indicator effects of Corbicula fluminea in coastal flat of Changjiang Estuary. Chinese Journal of Applied Ecology (in Chinese), 17(5): 883–886
    Li Baoquan, Li Xinzheng, Wang Hongfa, et al. 2007. Characters of a macrobenthic community off the Changjiang River Estuary. Acta Zoologica Sinica (in Chinese), 53(1): 76–82
    Liu Wenliang, He Wenshan, 2007. The Benthic Macro-Invertebrates in the Yangtze Estuary (in Chinese). Shanghai: Shanghai Science and Technology Press, 159
    Liu Lusan, Meng Wei, Tian Ziqiang, et al. 2008a. Distribution and variation of macrobenthos from the Changjiang Estuary and its adjacent waters. Acta Ecologica Sinica (in Chinese), 28(7): 3027–3034
    Liu Yong, Xian Weiwei, Sun Shichun, et al. 2008b. Primary studies on the biomass abundance and secondary production of macrobenthos in Changjiang Estuary. Periodical of Ocean University of China (in Chinese), 38(5): 749–756
    Liu Lusan, Zheng Binghui. 2010. Secondary production of macrobenthos in the Yangtze River Estuary and its adjacent waters. Chinese Journal of Applied & Environmental Biology (in Chinese), 16(5): 667–671
    Lowe V, Frid C L J, Venarsky M, et al. 2022. Responses of a macrobenthic community to seasonal freshwater flow in a wet-dry tropical estuary. Estuarine, Coastal and Shelf Science, 265: 107736
    Lu Lin, Grant J, Barrell J. 2008. Macrofaunal spatial patterns in relationship to environmental variables in the Richibucto Estuary, New Brunswick, Canada. Estuaries and Coasts, 31(5): 994–1005. doi: 10.1007/s12237-008-9097-9
    Manokaran S, Khan S A, Lyla S, et al. 2013. Feeding guild composition of shelf macrobenthic polychaetes of southeast coast of India. Tropical Zoology, 26(3): 120–139. doi: 10.1080/03946975.2013.825425
    Mariano D L S, Barros F. 2015. Intertidal benthic macrofaunal assemblages: changes in structure along entire tropical estuarine salinity gradients. Journal of the Marine Biological Association of the United Kingdom, 95(1): 5–15. doi: 10.1017/S002531541400126X
    O’Higgins T G, Ferraro S P, Dantin D D, et al. 2010. Habitat scale mapping of fisheries ecosystem service values in estuaries. Ecology and Society, 15(4): 7. doi: 10.5751/ES-03585-150407
    Peng Songyao, Li Xinzheng. 2013. Functional feeding groups of macrozoobenthos from coastal water off Rushan. Acta Ecologica Sinica (in Chinese), 33(17): 5274–5285. doi: 10.5846/stxb201205230767
    Qiu Baochao, Zhong Xin, Liu Xiaoshou. 2018. Assessment of the benthic ecological status in the adjacent waters of Yangtze River Estuary using marine biotic indices. Marine Pollution Bulletin, 137: 104–112. doi: 10.1016/j.marpolbul.2018.10.006
    Qiu Cheng, Zhu Jianrong. 2013. Influence of seasonal runoff regulation by the Three Gorges Reservoir on saltwater intrusion in the Changjiang River Estuary. Continental Shelf Research, 71: 16–26. doi: 10.1016/j.csr.2013.09.024
    Rakocinski C F, Brown S S, Gaston G R, et al. 1997. Macrobenthic responses to natural and contaminant-related gradients in northern gulf of Mexico estuaries. Ecological Applications, 7(4): 1278–1298. doi: 10.1890/1051-0761(1997)007[1278:MRTNAC]2.0.CO;2
    Reiss H, Cunze S, König K, et al. 2011. Species distribution modelling of marine benthos: a North Sea case study. Marine Ecology Progress Series, 442: 71–86. doi: 10.3354/meps09391
    Ritter C, Montagna P A, Applebaum S. 2005. Short-term succession dynamics of macrobenthos in a salinity-stressed estuary. Journal of Experimental Marine Biology and Ecology, 323(1): 57–69
    Shou Lu, Huang Yijun, Zeng Jiangning, et al. 2009. Seasonal changes of macrobenthos distribution and diversity in Zhoushan sea area. Aquatic Ecosystem Health & Management, 12(1): 110–115
    Shou Lu, Zeng Jiangning, Liao Yibo, et al. 2012. Seasonal distribution of macrozoobenthos in relation to environmental factors in Hangzhou Bay. Haiyang Xuebao (in Chinese), 34(6): 151–159
    Teske P R, Wooldridge T. 2001. A comparison of the macrobenthic faunas of permanently open and temporarily open/closed South African estuaries. Hydrobiologia, 464(1–3): 227–243
    Teske P R, Wooldridge T H. 2003. What limits the distribution of subtidal macrobenthos in permanently open and temporarily open/closed South African estuaries? Salinity vs. sediment particle size. Estuarine, Coastal and Shelf Science, 57(1–2): 225–238
    Udalov A A, Burkovskii I V, Mokievskii V O, et al. 2004. Changes in the general characteristics of micro-, meio-, and macrobenthos along the salinity gradient in the White Sea estuary. Oceanology, 44(4): 514–525
    Van Diggelen A D, Montagna P A. 2016. Is salinity variability a benthic disturbance in estuaries?. Estuaries and Coasts, 39(4): 967–980
    Wang Qiuxuan, Duarte C, Song Li, et al. 2021. Effects of ecological restoration using non-native mangrove Kandelia obovata to replace invasive Spartina alterniflora on intertidal macrobenthos community in Maoyan Island (Zhejiang, China). Journal of Marine Science and Engineering, 9(8): 788. doi: 10.3390/jmse9080788
    Wang Chunye, Pan Delu. 2017. Zoning of the Hangzhou Bay ecological red line using GIS-based multi-criteria decision analysis. Ocean & Coastal Management, 139: 42–50
    Weslawski J. 1999. Influence of salinity and suspended matter on benthos of an Arctic tidal flat. ICES Journal of Marine Science, 56: 194–202. doi: 10.1006/jmsc.1999.0620
    Wlodarska-Kowalczuk M, Kendall M A, Weslawski J M, et al. 2004. Depth gradients of benthic standing stock and diversity on the continental margin at a high-latitude ice-free site (off Spitsbergen, 79°N). Deep-Sea Research Part I: Oceanographic Research Papers, 51(12): 1903–1914. doi: 10.1016/j.dsr.2004.07.013
    Wu Xuwen, Salazar-Vallejo S I, Xu Kuidong. 2015. Two new species of Sternaspis Otto, 1821 (Polychaeta: Sternaspidae) from China seas. Zootaxa, 4052(3): 373–382. doi: 10.11646/zootaxa.4052.3.7
    Xu Zhaoli, Chen Yaqu. 1989. Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea and Yellow Sea. Chinese Journal of Ecology (in Chinese), 8(4): 13–15
    Yan Runxuan, Han Qingxi, Wang Xiaobo. 2020. Community composition and diversity of macrobenthos trawled in the Hangzhou Bay and Sanmen Bay. Oceanologia et Limnologia Sinica (in Chinese), 51(3): 484–493
    Yan Runxuan, Zhu Feng, Han Qinggong, et al. 2019. Research on intertidal macrobenthic community in the Yellow River Estuary. Chinese Journal of Zoology (in Chinese), 54(6): 835–844
    Ysebaert T, Herman P M J. 2002. Spatial and temporal variation in benthic macrofauna and relationships with environmental variables in an estuarine, intertidal soft-sediment environment. Marine Ecology Progress Series, 244: 105–124. doi: 10.3354/meps244105
    Zheng Xiaodong, Qu Xuecun, Zeng Xiaoqi, et al. 2013. Atlas of Aquatic Molluscs in China (in Chinese). Qingdao: Qingdao Press, 476–477
    Zhu Xiaojun, Lu Jianjian. 2003. Functional groups of zoobenthos in the intertidal zone of Jiuduansha, the Yangtze River Estuary. Zoological Research (in Chinese), 24(5): 355–361
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (230) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return