Turn off MathJax
Article Contents
Weifeng Yang, Xinxing Zhang, Min Chen, Ziming Fang, Yusheng Qiu. Utilizing 234Th/238U disequilibrium to constrain particle dynamics in hydrothermal plumes in the Southwest Indian Ocean[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1786-2
Citation: Weifeng Yang, Xinxing Zhang, Min Chen, Ziming Fang, Yusheng Qiu. Utilizing 234Th/238U disequilibrium to constrain particle dynamics in hydrothermal plumes in the Southwest Indian Ocean[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1786-2

Utilizing 234Th/238U disequilibrium to constrain particle dynamics in hydrothermal plumes in the Southwest Indian Ocean

doi: 10.1007/s13131-021-1786-2
Funds:  The National Natural Science Foundation of China under contract Nos 41721005 and 41476061; China Ocean Mineral Resources R&D Association Programs under contract Nos DY135-E2-2-03 and DY125-22-QY-17; the Fundamental Research Funds for the Central Universities under contract No. 20720190102.
More Information
  • Corresponding author: E-mail: wyang@xmu.edu.cn
  • Received Date: 2020-02-19
  • Accepted Date: 2020-06-04
  • Available Online: 2021-07-02
  • Metal-enriched minerals have been widely observed near hydrothermal vent fields. However, the dynamics of particulate metals influenced by hydrothermal activities is poorly constrained. Here, radioactive 234Th in both dissolved and particulate phases were used to examine the kinetics of particle-reactive metal adsorption, removal, and residence in a newly found hydrothermal plume over the Southwest Indian Ridge. The results showed a relatively low value on 234Th/238U ratios (i.e., 0.73–0.88) compared to the deep oceans, indicating an enhanced adsorption of particle-reactive metals onto particulate matter in the plume. Based on the 234Th-238U disequilibria, the adsorption and sinking rate constants of 234Th averaged (0.009±0.001) d–1 and (0.113±0.024) d–1 in the hydrothermal plume, corresponding to the residence times of (115±19) d and (16±5) d for dissolved and particulate 234Th, respectively. This timescale allows vent-discharged particle-reactive metals to disperse hundreds to thousands of miles away. Thus, hydrothermal activities might influence the metal distribution in deep ocean over a very large scope. Also, a high sinking flux of (36.2±5.4) Bq/(m2·d) for 234Th was observed outside of the plume, suggesting an enrichment of metal in particles deposited close to the vent. The enhancement of particle sinking could also benefit the transport of organic carbon and nitrogen and fuel the benthic ecosystems under the plume regimes. Thus, hydrothermal plumes may have an impact on both the elemental geochemistry and/or ecosystem to the deep oceans interior than previous expectation.
  • loading
  • [1]
    Anand S S, Rengarajan R, Sarma V V S S. 2018. 234Th-based carbon export flux along the Indian GEOTRACES GI02 section in the Arabian Sea and the Indian Ocean. Global Biogeochemical Cycles, 32(3): 417–436. doi: 10.1002/2017GB005847
    [2]
    Bacon M P, Rutgers van der Loeff M M. 1989. Removal of thorium-234 by scavenging in the bottom nepheloid layer of the ocean. Earth and Planetary Science Letters, 92(2): 157–164. doi: 10.1016/0012-821X(89)90043-5
    [3]
    Bacon M P, Spencer D W, Brewer P G. 1976. 210Pb/226Ra and 210Po/210Pb disequilibria in seawater and suspended particulate matter. Earth and Planetary Science Letters, 32(2): 277–296. doi: 10.1016/0012-821X(76)90068-6
    [4]
    Beaulieu S E, Mullineaux L S, Adams D K, et al. 2009. Comparison of a sediment trap and plankton pump for time-series sampling of larvae near deep-sea hydrothermal vents. Limnology and Oceanography, 7(3): 235–248. doi: 10.4319/lom.2009.7.235
    [5]
    Benitez-Nelson C R, Buesseler K O, Karl D M, et al. 2001a. A time-series study of particulate matter export in the North Pacific Subtropical Gyre based on 234Th: 238U disequilibrium. Deep-Sea Research Part I: Oceanographic Research Papers, 48(12): 2595–2611. doi: 10.1016/S0967-0637(01)00032-2
    [6]
    Benitez-Nelson C R, Buesseler K O, Rutgers van der Loeff M, et al. 2001b. Testing a new small-volume technique for determining 234Th in seawater. Journal of Radioanalytical and Nuclear Chemistry, 248(3): 795–799. doi: 10.1023/A:1010621618652
    [7]
    Bi Qianqian, Du Jinzhou, Wu Ying, et al. 2013. Particulate organic carbon export flux by 234Th/238U disequilibrium in the continental slope of the East China Sea. Acta Oceanologica Sinica, 32(10): 67–73. doi: 10.1007/s13131-013-0303-7
    [8]
    Boisson F, Miquel J C, Cotret O, et al. 2001. 210Po and 210Pb cycling in a hydrothermal vent zone in the coastal Aegean Sea. Science of the Total Environment, 281(1–3): 111–119. doi: 10.1016/S0048-9697(01)00840-3
    [9]
    Buesseler K O, Bacon M P, Cochran J K, et al. 1992. Carbon and nitrogen export during the JGOFS North Atlantic bloom experiment estimated from 234Th: 238U disequilibria. Deep-Sea Research Part A: Oceanographic Research Papers, 39(7–8): 1115–1137. doi: 10.1016/0198-0149(92)90060-7
    [10]
    Buesseler K O, Pike S, Maiti K, et al. 2009. Thorium-234 as a tracer of spatial, temporal and vertical variability in particle flux in the North Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 56(7): 1143–1167. doi: 10.1016/j.dsr.2009.04.001
    [11]
    Cai Pinghe, Chen Weifang, Dai Minhan, et al. 2008. A high-resolution study of particle export in the southern South China Sea based on 234Th: 238U disequilibrium. Journal of Geophysical Research, 113(C4): C04019. doi: 10.1029/2007JC004268
    [12]
    Chakraborty P, Sander S G, Jayachandran S, et al. 2014. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin. Environmental Pollution, 194: 138–144. doi: 10.1016/j.envpol.2014.07.012
    [13]
    Charette M A, Moran S B, Bishop J K B. 1999. 234Th as a tracer of particulate organic carbon export in the subarctic northeast Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 46(11–12): 2833–2861. doi: 10.1016/S0967-0645(99)00085-5
    [14]
    Coppola L, Roy-Barman M, Mulsow S, et al. 2005. Low particulate organic carbon export in the frontal zone of the Southern Ocean (Indian sector) revealed by 234Th. Deep-Sea Research Part I: Oceanographic Research Papers, 52(1): 51–68. doi: 10.1016/j.dsr.2004.07.020
    [15]
    Coppola L, Roy-Barman M, Wassmann P, et al. 2002. Calibration of sediment traps and particulate organic carbon export using 234Th in the Barents Sea. Marine Chemistry, 80(1): 11–26. doi: 10.1016/S0304-4203(02)00071-3
    [16]
    Estapa M L, Breier J A, German C R. 2015. Particle dynamics in the rising plume at Piccard Hydrothermal Field, Mid-Cayman Rise. Geochemistry, Geophysics, Geosystems, 16(8): 2762–2774. doi: 10.1002/2015GC005831
    [17]
    Feely R A, Massoth G J, Baker E T, et al. 1990. The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth and Planetary Science Letters, 96(3–4): 305–318. doi: 10.1016/0012-821X(90)90009-M
    [18]
    German C R, Colley S, Palmer M R, et al. 2002. Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise. Deep-Sea Research Part I: Oceanographic Research Papers, 49(11): 1921–1940. doi: 10.1016/S0967-0637(02)00086-9
    [19]
    German C R, Legendre L L, Sander S G, et al. 2015. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: model-based evidence for significant POC supply to seafloor sediments. Earth and Planetary Science Letters, 419: 143–153. doi: 10.1016/j.jpgl.2015.03.012
    [20]
    Guo Laodong, Chen Min, Gueguen C. 2002. Control of Pa/Th ratio by particulate chemical composition in the ocean. Geophysical Research Letters, 29(20): 1961. doi: 10.1029/2002GL015666
    [21]
    Hayes C T, Anderson R F, Fleisher M Q, et al. 2015. Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean. Marine Chemistry, 170: 49–60. doi: 10.1016/j.marchem.2015.01.006
    [22]
    Huang Dekun, Du Jinzhou, Moore W S, et al. 2013. Particle dynamics of the Changjiang Estuary and adjacent coastal region determined by natural particle-reactive radionuclides (7Be, 210Pb, and 234Th). Journal of Geophysical Research, 118(4): 1736–1748. doi: 10.1002/jgrc.20148
    [23]
    Hung C C, Gong G C. 2010. POC/234Th ratios in particles collected in sediment traps in the northern South China Sea. Estuarine, Coastal and Shelf Science, 88(3): 303–310. doi: 10.1016/j.ecss.2010.04.008
    [24]
    Hung C C, Gong G C, Santschi P H. 2012. 234Th in different size classes of sediment trap collected particles from the Northwestern Pacific Ocean. Geochimica et Cosmochimica Acta, 91: 60–74. doi: 10.1016/j.gca.2012.05.017
    [25]
    Ingebritsen S E, Evans W C. 2019. Potential for increased hydrothermal arsenic flux during volcanic unrest: implications for California water supply. Applied Geochemistry, 108: 104384. doi: 10.1016/j.apgeochem.2019.104384
    [26]
    Kádár E, Costa V, Segonzac M. 2007. Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Science of the Total Environment, 373(2–3): 464–472. doi: 10.1016/j.scitotenv.2006.12.022
    [27]
    Kadko D, Feely R, Massoth G. 1994. Scavenging of 234Th and phosphorus removal from the hydrothermal effluent plume over the North Cleft segment of the Juan de Fuca Ridge. Journal of Geophysical Research, 99(B3): 5017–5024. doi: 10.1029/93JB02952
    [28]
    Liao Shili, Tao Chunhui, Li Huaiming, et al. 2017. Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge. Acta Oceanologica Sinica, 36(7): 66–76. doi: 10.1007/s13131-017-1085-0
    [29]
    Lin Peng, Chen Min, Guo Laodong. 2012. Speciation and transformation of phosphorus and its mixing behavior in the Bay of St. Louis estuary in the northern Gulf of Mexico. Geochimica et Cosmochimica Acta, 87: 283–298. doi: 10.1016/j.gca.2012.03.040
    [30]
    Lin Peng, Guo Laodong, Chen Min. 2014. Adsorption and fractionation of thorium and protactinium on nanoparticles in seawater. Marine Chemistry, 162: 50–59. doi: 10.1016/j.marchem.2014.03.004
    [31]
    Lozano-Bilbao E, Gutiérrez á J, Hardisson A, et al. 2018. Influence of the submarine volcanic eruption off El Hierro (Canary Islands) on the mesopelagic cephalopod’s metal content. Marine Pollution Bulletin, 129(2): 474–479. doi: 10.1016/j.marpolbul.2017.10.017
    [32]
    Ma Hao, Zeng Zhi, Yu Wen, et al. 2011. 234Th/238U disequilibrium and particulate organic carbon export in the northwestern South China Sea. Acta Oceanologica Sinica, 30(3): 55–62. doi: 10.1007/s13131-011-0119-2
    [33]
    Ma Haoyang, Yang Weifeng, Zhang Lihao, et al. 2017. Utilizing 210Po deficit to constrain particle dynamics in mesopelagic water, western South China Sea. Geochemistry, Geophysics, Geosystems, 18(4): 1594–1607. doi: 10.1002/2017GC006899
    [34]
    Owens S A, Buesseler K O, Sims K W W. 2011. Re-evaluating the 238U-salinity relationship in seawater: Implications for the 238U-234Th disequilibrium method. Marine Chemistry, 127(1–4): 31–39. doi: 10.1016/j.marchem.2011.07.005
    [35]
    Owens S A, Pike S, Buesseler K O. 2015. Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 116: 42–59. doi: 10.1016/j.dsr2.2014.11.010
    [36]
    Pancaldi F, Galván-Magaña F, González-Armas R, et al. 2019. Mercury and selenium in the filter–feeding whale shark (Rhincodon typus) from two areas of the Gulf of California, Mexico. Marine Pollution Bulletin, 146: 955–961. doi: 10.1016/j.marpolbul.2019.07.017
    [37]
    Pavia F J, Anderson R F, Black E E, et al. 2019. Timescales of hydrothermal scavenging in the South Pacific Ocean from 234Th, 230Th, and 228Th. Earth and Planetary Science Letters, 506: 146–156. doi: 10.1016/j.jpgl.2018.10.038
    [38]
    Peng S H, Hung J J, Hwang J S. 2011. Bioaccumulation of trace metals in the submarine hydrothermal vent crab Xenograpsus testudinatus off Kueishan Island, Taiwan. Marine Pollution Bulletin, 63(5–12): 396–401. doi: 10.1016/j.marpolbul.2011.05.013
    [39]
    Ran Lihua, Chen Jianfang, Wiesner M G, et al. 2015. Variability in the abundance and species composition of diatoms in sinking particles in the northern South China Sea: Results from time-series moored sediment traps. Deep-Sea Research Part II: Topical Studies in Oceanography, 122: 15–24. doi: 10.1016/j.dsr2.2015.07.004
    [40]
    Ray D, Banerjee R, Mazumder A, et al. 2018. Mineralogical and geochemical variation in hydrothermal sulfides from Vienna Woods field, Manus Basin, Papua New Guinea: constraints on their evolution. Acta Oceanologica sinica, 37(4): 22–33. doi: 10.1007/s13131-018-1194-4
    [41]
    Rixen T, Gaye B, Emeis K C. 2019. The monsoon, carbon fluxes, and the organic carbon pump in the northern Indian Ocean. Progress in Oceanography, 175: 24–39. doi: 10.1016/j.pocean.2019.03.001
    [42]
    Roca-Martí M, Puigcorbé V, Iversen M H, et al. 2017. High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 138: 102–115. doi: 10.1016/j.dsr2.2015.12.007
    [43]
    Rutgers van der Loeff M M, Buesseler K, Bathmann U, et al. 2002. Comparison of carbon and opal export rates between summer and spring bloom periods in the region of the Antarctic Polar Front, SE Atlantic. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(18): 3849–3869. doi: 10.1016/S0967-0645(02)00114-5
    [44]
    Santos M M, Jorge P A S, Coimbra J, et al. 2018. The last frontier: coupling technological developments with scientific challenges to improve hazard assessment of deep-sea mining. Science of the Total Environment, 627: 1505–1514. doi: 10.1016/j.scitotenv.2018.01.221
    [45]
    Schmidt S. 2006. Impact of the Mediterranean outflow water on particle dynamics in intermediate waters of the Northeast Atlantic, as revealed by 234Th and 228Th. Marine Chemistry, 100(3–4): 289–298. doi: 10.1016/j.marchem.2005.10.017
    [46]
    Shih Y Y, Lin H H, Li Dewang, et al. 2019. Elevated carbon flux in deep waters of the South China Sea. Scientific Reports, 9(1): 1496. doi: 10.1038/s41598-018-37726-w
    [47]
    Siegel D A, Fields E, Buesseler K O. 2008. A bottom-up view of the biological pump: modeling source funnels above ocean sediment traps. Deep-Sea Research Part I: Oceanographic Research Papers, 55(1): 108–127. doi: 10.1016/j.dsr.2007.10.006
    [48]
    Smith C R, De Leo F C, Bernardino A F, et al. 2008. Abyssal food limitation, ecosystem structure and climate change. Trends in Ecology & Evolution, 23(9): 518–528. doi: 10.1016/j.tree.2008.05.002
    [49]
    Smith C R, Rabouille C. 2002. What controls the mixed-layer depth in deep-sea sediments? The importance of POC flux. Limnology and Oceanography, 47(2): 418–426. doi: 10.4319/lo.2002.47.2.0418
    [50]
    Sun Xiaoxia. 2011. Study on the suspended particulate minerals in the water column in the Eastern Equatorial Pacific Ocean and hydrothermal active areas in the Southwest Indian Ocean (in Chinese)[dissertation]. Qingdao: Ocean University of China
    [51]
    Sun Xiaoxia, Yang Zuosheng, Fan Dejiang, et al. 2014. Suspended zinc sulfide particles in the Southwest Indian Ridge area and their relationship with hydrothermal activity. Chinese Science Bulletin, 59(9): 913–923. doi: 10.1007/s11434-014-0118-8
    [52]
    Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 40(1): 47–50. doi: 10.1130/G32389.1
    [53]
    Toner B M, Fakra S C, Manganini S J, et al. 2009. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geoscience, 2(3): 197–201. doi: 10.1038/ngeo433
    [54]
    Turnewitsch R, Reyss J L, Nycander J, et al. 2008. Internal tides and sediment dynamics in the deep sea—Evidence from radioactive 234Th/238U disequilibria. Deep-Sea Research Part I: Oceanographic Research Papers, 55(12): 1727–1747. doi: 10.1016/j.dsr.2008.07.008
    [55]
    Wang Hu, Yang Qunhui, Ji Fuwu, et al. 2012. The geochemical characteristics and Fe(II) oxidation kinetics of hydrothermal plumes at the Southwest Indian Ridge. Marine Chemistry, 134–135: 29–35. doi: 10.1016/j.marchem.2012.02.009
    [56]
    Yang Weifeng, Chen Min, Cao Jianping, et al. 2009. Influence of particle composition on thorium scavenging in the marginal China Seas. Acta Oceanologica Sinica, 28(2): 45–53. doi: 10.3969/j.issn.0253-505X.2009.02.005
    [57]
    Yang Weifeng, Chen Min, Zheng Minfang, et al. 2015a. Influence of a decaying cyclonic eddy on biogenic silica and particulate organic carbon in the Tropical South China Sea based on 234Th-238U disequilibrium. PLoS One, 10(8): e0136948. doi: 10.1371/journal.pone.0136948
    [58]
    Yang Weifeng, Guo Laodong, Chuang C Y, et al. 2013. Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds. Geochimica et Cosmochimica Acta, 107: 47–64. doi: 10.1016/j.gca.2012.12.039
    [59]
    Yang Weifeng, Guo Laodong, Chuang C Y, et al. 2015b. Influence of organic matter on the adsorption of 210Pb, 210Po and 7Be and their fractionation on nanoparticles in seawater. Earth and Planetary Science Letters, 423: 193–201. doi: 10.1016/j.jpgl.2015.05.007
    [60]
    Yang Weifeng, Zhang Xinxing, Chen Min, et al. 2016. Unusually low 234Th in a hydrothermal effluent plume over the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 17(9): 3815–3824. doi: 10.1002/2016GC006580
    [61]
    Zhang Jingjing, Li Hongliang, Xuan Jiliang, et al. 2019. Enhancement of mesopelagic sinking particle fluxes due to upwelling, aerosol deposition, and monsoonal influences in the Northwestern South China Sea. Journal of Geophysical Research, 124(1): 99–112. doi: 10.1029/2018JC014704
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (18) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return