ZHENG Chongwei, PAN Jing, TAN Yanke, GAO Zhansheng, RUI Zhenfeng, CHEN Chaohui. The seasonal variations in the significant wave height and sea surface wind speed of the China's seas[J]. Acta Oceanologica Sinica, 2015, 34(9): 58-64. doi: 10.1007/s13131-015-0738-0
Citation:
Chen Xue, Lin Jinfeng. A preliminary analysis on lithospheric thickness and crustal ages in central basin of South China Sea[J]. Acta Oceanologica Sinica, 1997, (1): 85-107.
ZHENG Chongwei, PAN Jing, TAN Yanke, GAO Zhansheng, RUI Zhenfeng, CHEN Chaohui. The seasonal variations in the significant wave height and sea surface wind speed of the China's seas[J]. Acta Oceanologica Sinica, 2015, 34(9): 58-64. doi: 10.1007/s13131-015-0738-0
Citation:
Chen Xue, Lin Jinfeng. A preliminary analysis on lithospheric thickness and crustal ages in central basin of South China Sea[J]. Acta Oceanologica Sinica, 1997, (1): 85-107.
The models about lithospheric thickness and thermal conduction inside the lithosphere and the top layer ofthe asthenosphere have been proposed in this study for four type regions:the midoceanic ridge,the extinct spreading ridge,the lithospheric fault fissure and the mouth of the extinct submarine volcanoes which are in deep sea bottom.The solutions of the models are found to be the same.The formulas of temperature distribution inside the lithosphere and the top layer of the asthenosphere,the lithospheric thicknesses to the heat flow and the crustal ages to the heat flow are obtained.The crustal ages and the lithospheric thicknesses of the central basin are calculated.And they are used to draw the lithospheric thicknesses and crustal ages maps of the central basin (in this paper both the central basin and the basin are the central basin of the South China Sea).According to their characteristics,the central basin is divided into three regions.The lithospheric thicknesses,crustal ages and heat flow distribution characteristics are discussed respectively.The formation and evolution of the South China Sea are analysed and it is thought that the South China Sea has undergone three episode-seafloor spreadings.
M F Islami, Jasruddin, E H Sujiono. The Utilization of Seasonal Variation of Ocean Wave Characteristics Identification in Monitoring the Chlorophyll-a Distribution in South Sulawesi. IOP Conference Series: Earth and Environmental Science, 2023, 1251(1): 012027. doi:10.1088/1755-1315/1251/1/012027
2.
Bahareh Kamranzad, Khalid Amarouche, Adem Akpinar. Linking the long-term variability in global wave energy to swell climate and redefining suitable coasts for energy exploitation. Scientific Reports, 2022, 12(1) doi:10.1038/s41598-022-18935-w
3.
Yuhan Cao, Changming Dong, Ian R. Young, et al. Global Wave Height Slowdown Trend during a Recent Global Warming Slowdown. Remote Sensing, 2021, 13(20): 4096. doi:10.3390/rs13204096
4.
Yuru Li, Shuyang Ma, Caihong Fu, et al. Appraising the Status of Fish Community Structure in the Yellow Sea Based on an Indicator-Testing Framework. Frontiers in Marine Science, 2021, 8 doi:10.3389/fmars.2021.646733
5.
Shuyang Ma, Yang Liu, Jianchao Li, et al. Climate-induced long-term variations in ecosystem structure and atmosphere-ocean-ecosystem processes in the Yellow Sea and East China Sea. Progress in Oceanography, 2019, 175: 183. doi:10.1016/j.pocean.2019.04.008
6.
Zhuxiao Shao, Bingchen Liang, Huajun Li, et al. Extreme significant wave height of tropical cyclone waves in the South China Sea. Natural Hazards and Earth System Sciences, 2019, 19(10): 2067. doi:10.5194/nhess-19-2067-2019
7.
Yanda Ou, Fangguo Zhai, Peiliang Li. Interannual wave climate variability in the Taiwan Strait and its relationship to ENSO events. Journal of Oceanology and Limnology, 2018, 36(6): 2110. doi:10.1007/s00343-019-7301-3
8.
Bijoy Thompson, Pavel Tkalich, Paola Malanotte-Rizzoli. Regime shift of the South China Sea SST in the late 1990s. Climate Dynamics, 2017, 48(5-6): 1873. doi:10.1007/s00382-016-3178-4
9.
Chongwei Zheng, Chongyin Li, Hailang Wu, et al. 21st Century Maritime Silk Road: Construction of Remote Islands and Reefs. Springer Oceanography, doi:10.1007/978-981-10-8114-9_4
10.
Tiago C.A. Oliveira, Pavel Tkalich, Bien Aik Tan, et al. High-resolution wind-wave model for the Sea Surface Wave Height forecasting and hindcasting. Global Oceans 2020: Singapore – U.S. Gulf Coast, doi:10.1109/IEEECONF38699.2020.9389087
ZHENG Chongwei, PAN Jing, TAN Yanke, GAO Zhansheng, RUI Zhenfeng, CHEN Chaohui. The seasonal variations in the significant wave height and sea surface wind speed of the China's seas[J]. Acta Oceanologica Sinica, 2015, 34(9): 58-64. doi: 10.1007/s13131-015-0738-0
ZHENG Chongwei, PAN Jing, TAN Yanke, GAO Zhansheng, RUI Zhenfeng, CHEN Chaohui. The seasonal variations in the significant wave height and sea surface wind speed of the China's seas[J]. Acta Oceanologica Sinica, 2015, 34(9): 58-64. doi: 10.1007/s13131-015-0738-0