Citation: | Xiao Yin, Taoxing Wu, Jie Yu, Xiaoyu He, Lingyu Xu. A significant wave height prediction method with ocean characteristics fusion and spatiotemporal dynamic graph modeling[J]. Acta Oceanologica Sinica, 2024, 43(12): 13-33. doi: 10.1007/s13131-024-2450-4 |
Abu-El-Haija S, Perozzi B, Kapoor A, et al. 2019. Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. In: Proceedings of the 36th International Conference on Machine Learning. Long Beach: PMLR, 21–29
|
Ali M, Prasad R. 2019. Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition. Renewable and Sustainable Energy Reviews, 104: 281–295, doi: 10.1016/j.rser.2019.01.014
|
Ba J L, Kiros J R, Hinton G E. 2016. Layer normalization. USA: arXiv preprint arXiv: 1607. 06450, https://doi.org/10.48550/arXiv.1607.06450[2016-07-21/2023-09-01]
|
Chen Delong, Liu Fan, Zhang Zheqi, et al. 2021. Significant wave height prediction based on wavelet graph neural network. In: 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI). Qingdao: IEEE, 80−85
|
Cho K, Van Merriënboer B, Gulcehre C, et al. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 1724–1734
|
Dando W A. 2005. Asia, climates of Siberia, Central and East Asia. In: Oliver J E, ed. Encyclopedia of World Climatology. Dordrecht: Springer, 102–114
|
Dauphin Y N, Fan A, Auli M, et al. 2017. Language modeling with gated convolutional networks. In: Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR. org, 933-941
|
De Andrés A D, Guanche R, Meneses L, et al. 2014. Factors that influence array layout on wave energy farms. Ocean Engineering, 82: 32–41, doi: 10.1016/j.oceaneng.2014.02.027
|
Ding Jie, Deng Fangyu, Liu Qi, et al. 2023. Regional forecasting of significant wave height and mean wave period using EOF-EEMD-SCINet hybrid model. Applied Ocean Research, 136: 103582, doi: 10.1016/j.apor.2023.103582
|
Duan Wenyang, Han Yang, Huang Limin, et al. 2016. A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Engineering, 124: 54–73, doi: 10.1016/j.oceaneng.2016.05.049
|
Feng Xi, Ma Gangfeng, Su S F, et al. 2020. A multi-layer perceptron approach for accelerated wave forecasting in Lake Michigan. Ocean Engineering, 211: 107526, doi: 10.1016/j.oceaneng.2020.107526
|
Gao Yuan, Miyata S, Akashi Y. 2022. Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention. Applied Energy, 321: 119288, doi: 10.1016/j.apenergy.2022.119288
|
Gao Hong, Xiao Jie. 2021. Effects of power take-off parameters and harvester shape on wave energy extraction and output of a hydraulic conversion system. Applied Energy, 299: 117278, doi: 10.1016/j.apenergy.2021.117278
|
Ge Ming, Kerrigan E C. 2016. Short-term ocean wave forecasting using an autoregressive moving average model. In: 2016 UKACC 11th International Conference on Control (CONTROL). Belfast: IEEE, 1–6
|
Geng Xiulin, Xu Lingyu, He Xiaoyu, et al. 2021. Graph optimization neural network with spatio-temporal correlation learning for multi-node offshore wind speed forecasting. Renewable Energy, 180: 1014–1025, doi: 10.1016/j.renene.2021.08.066
|
Goda Y. 2010. Random seas and design of maritime structures. New Jersey: World Scientific Publishing Company, 3–10
|
Hashim R, Roy C, Motamedi S, et al. 2016. Selection of climatic parameters affecting wave height prediction using an enhanced Takagi-Sugeno-based fuzzy methodology. Renewable and Sustainable Energy Reviews, 60: 246–257, doi: 10.1016/j.rser.2016.01.098
|
Hersbach H, Bell B, Berrisford P, et al. 2023a. ERA5 hourly data on single levels from 1940 to present. United Kingdom: Copernicus Climate Change Service (C3S), Climate Data Store (CDS), doi: 10.24381/cds.adbb2d47, https://doi.org/10.24381/cds.bd0915c6 [2018-06-14/2023-09-01]
|
Hersbach H, Bell B, Berrisford P, et al. 2023b. ERA5 monthly averaged data on single levels from 1940 to present. United Kingdom: Copernicus Climate Change Service (C3S), Climate Data Store (CDS), doi: 10.24381/cds.f17050d7, https://doi.org/10.24381/cds.f17050d7 [2019-04-18/2023-09-01]
|
Hisaki Y. 2023. Swell and wind-wave height variability in the East China Sea. Ocean Dynamics, 73(8): 493–515, doi: 10.1007/s10236-023-01552-0
|
Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735–1780, doi: 10.1162/neco.1997.9.8.1735
|
Khosravi A, Machado L, Nunes R O. 2018. Time-series prediction of wind speed using machine learning algorithms: a case study Osorio wind farm, Brazil. Applied Energy, 224: 550–566, doi: 10.1016/j.apenergy.2018.05.043
|
Kingma D P, Ba J. 2015. Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations. San Diego: ICLR
|
Kitagawa G, Gersch W. 1984. A smoothness priors-state space modeling of time series with trend and seasonality. Journal of the American Statistical Association, 79(386): 378–389
|
Li Xinfang, Cao Jinfeng, Guo Jihong, et al. 2022. Multi-step forecasting of ocean wave height using gate recurrent unit networks with multivariate time series. Ocean Engineering, 248: 110689, doi: 10.1016/j.oceaneng.2022.110689
|
Li Shuang, Hao Peng, Yu Chengcheng, et al. 2021. CLTS-net: a more accurate and universal method for the long-term prediction of significant wave height. Journal of Marine Science and Engineering, 9(12): 1464, doi: 10.3390/jmse9121464
|
Luo Qinrui, Xu Hang, Bai Longhu. 2022. Prediction of significant wave height in hurricane area of the Atlantic Ocean using the Bi-LSTM with attention model. Ocean Engineering, 266: 112747, doi: 10.1016/j.oceaneng.2022.112747
|
Ma Qijie, Wang Peijun, Fan Jianhua, et al. 2022. Underground solar energy storage via energy piles: an experimental study. Applied Energy, 306: 118042, doi: 10.1016/j.apenergy.2021.118042
|
Mahjoobi J, Etemad-Shahidi A. 2008. An alternative approach for the prediction of significant wave heights based on classification and regression trees. Applied Ocean Research, 30(3): 172–177, doi: 10.1016/j.apor.2008.11.001
|
Mahjoobi J, Mosabbeb E A. 2009. Prediction of significant wave height using regressive support vector machines. Ocean Engineering, 36(5): 339–347, doi: 10.1016/j.oceaneng.2009.01.001
|
Mandal S, Prabaharan N. 2006. Ocean wave forecasting using recurrent neural networks. Ocean Engineering, 33(10): 1401–1410, doi: 10.1016/j.oceaneng.2005.08.007
|
Mirzaei A, Tangang F, Juneng L. 2015. Wave energy potential assessment in the central and southern regions of the South China Sea. Renewable Energy, 80: 454–470, doi: 10.1016/j.renene.2015.02.005
|
Niu Dongxiao, Yu Min, Sun Lijie, et al. 2022. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism. Applied Energy, 313: 118801, doi: 10.1016/j.apenergy.2022.118801
|
Oreshkin B N, Carpov D, Chapados N, et al. 2020. N-BEATS: neural basis expansion analysis for interpretable time series forecasting. In: 8th International Conference on Learning Representations. Addis Ababa: ICLR
|
Owens E H. 1982. Sea conditions. In: Schwartz M, ed. Beaches and Coastal Geology. New York: Springer, 722
|
Pirhooshyaran M, Snyder L V. 2020. Forecasting, hindcasting and feature selection of ocean waves via recurrent and sequence-to-sequence networks. Ocean Engineering, 207: 107424, doi: 10.1016/j.oceaneng.2020.107424
|
Quach B, Glaser Y, Stopa J E, et al. 2021. Deep learning for predicting significant wave height from synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 59(3): 1859–1867, doi: 10.1109/TGRS.2020.3003839
|
Reikard G, Pinson P, Bidlot J R. 2011. Forecasting ocean wave energy: the ECMWF wave model and time series methods. Ocean Engineering, 38(10): 1089–1099, doi: 10.1016/j.oceaneng.2011.04.009
|
Ren Yuting, Li Zhuolin, Xu Lingyu, et al. 2023. The data-based adaptive graph learning network for analysis and prediction of offshore wind speed. Energy, 267: 126590, doi: 10.1016/j.energy.2022.126590
|
Soares C G, Cunha C. 2000. Bivariate autoregressive models for the time series of significant wave height and mean period. Coastal Engineering, 40(4): 297–311, doi: 10.1016/S0378-3839(00)00015-6
|
Song Wei, Li Qichao, He Qi, et al. 2021. Determining wave height from nearshore videos based on multi-level spatiotemporal feature fusion. In: 2021 International Joint Conference on Neural Networks (IJCNN). Shenzhen: IEEE, 1–8
|
Ti Zilong, Song Yubing, Deng Xiaowei. 2022. Spatial-temporal wave height forecast using deep learning and public reanalysis dataset. Applied Energy, 326: 120027, doi: 10.1016/j.apenergy.2022.120027
|
Tolman H L. 2009. User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note, MMAB Contribution, 276: 220.
|
Tsai Y H H, Bai Shaojie, Liang P P, et al. 2019. Multimodal transformer for unaligned multimodal language sequences. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence: Association for Computational Linguistics, 6558–6569
|
Tsai C P, Lin Chang, Shen Jia-N. 2002. Neural network for wave forecasting among multi-stations. Ocean Engineering, 29(13): 1683–1695, doi: 10.1016/S0029-8018(01)00112-3
|
Tuttle J F, Blackburn L D, Andersson K, et al. 2021. A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling. Applied Energy, 292: 116886, doi: 10.1016/j.apenergy.2021.116886
|
Umair M, Hashmani M A, Hasan M H B. 2019. Survey of sea wave parameters classification and prediction using machine learning models. In: 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS). Ipoh: IEEE, 1–6
|
Vaswani A, Shazeer N, Parmar N, et al. 2017. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 6000-6010
|
Wang Jin, Dong Changming, He Yijun. 2016. Wave climatological analysis in the East China Sea. Continental Shelf Research, 120: 26–40, doi: 10.1016/j.csr.2016.03.010
|
Wang Jichao, Liu Jincan, Wang Yue, et al. 2021. Spatiotemporal variations and extreme value analysis of significant wave height in the South China Sea based on 71-year long ERA5 wave reanalysis. Applied Ocean Research, 113: 102750, doi: 10.1016/j.apor.2021.102750
|
Wang Jichao, Sun Peidong, Liao Zhihong, et al. 2022. Long-term trend analysis of wave characteristics in the Bohai Sea based on interpolated ERA5 wave reanalysis from 1950 to 2020. Acta Oceanologica Sinica, 41(7): 97–112, doi: 10.1007/s13131-021-1974-0
|
Wang Wenxu, Tang Ruichun, Li Cheng, et al. 2018. A BP neural network model optimized by mind evolutionary algorithm for predicting the ocean wave heights. Ocean Engineering, 162: 98–107, doi: 10.1016/j.oceaneng.2018.04.039
|
Wang Jichao, Wang Yue. 2022. Evaluation of the ERA5 significant wave height against NDBC buoy data from 1979 to 2019. Marine Geodesy, 45(2): 151–165, doi: 10.1080/01490419.2021.2011502
|
Wu Zonghan, Pan Shirui, Long Guodong, et al. 2020. Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Association for Computing Machinery, 753–763
|
Xiang Ling, Yang Xin, Hu Aijun, et al. 2022. Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks. Applied Energy, 305: 117925, doi: 10.1016/j.apenergy.2021.117925
|
Xu Xinxin, Robertson B, Buckham B. 2020. A techno-economic approach to wave energy resource assessment and development site identification. Applied Energy, 260: 114317, doi: 10.1016/j.apenergy.2019.114317
|
Yang Bo, Wu Shaocong, Zhang Hao, et al. 2022. Wave energy converter array layout optimization: a critical and comprehensive overview. Renewable and Sustainable Energy Reviews, 167: 112668, doi: 10.1016/j.rser.2022.112668
|
Yu F, Koltun V. 2016. Multi-scale context aggregation by dilated convolutions. In: 4th International Conference on Learning Representations. San Juan: ICLR
|
Zhai Fangguo, Wu Wenfan, Gu Yanzhen, et al. 2021. Dynamics of the seasonal wave height variability in the South China Sea. International Journal of Climatology, 41(2): 934–951, doi: 10.1002/joc.6707
|
Zhang Chu, Hua Lei, Ji Chunlei, et al. 2022. An evolutionary robust solar radiation prediction model based on WT-CEEMDAN and IASO-optimized outlier robust extreme learning machine. Applied Energy, 322: 119518, doi: 10.1016/j.apenergy.2022.119518
|
Zhang Yao, Xu Lingyu, Yu Jie. 2023. Significant wave height prediction based on dynamic graph neural network with fusion of ocean characteristics. Dynamics of Atmospheres and Oceans, 103: 101388, doi: 10.1016/j.dynatmoce.2023.101388
|
Zhou Shuyi, Xie Wenhong, Lu Yuxiang, et al. 2021. ConvLSTM-based wave forecasts in the South and East China seas. Frontiers in Marine Science, 8: 680079, doi: 10.3389/fmars.2021.680079
|