Citation: | Xiaofang Jiang, Feijian Yin. Analysis of coastline changes and influencing factors for the Macao Special Administrative Region based on Neural Network Algorithms[J]. Acta Oceanologica Sinica, 2024, 43(11): 118-130. doi: 10.1007/s13131-024-2437-1 |
Adrian J, Sagan V, Maimaitijiang M. 2021. Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 175: 215–235, doi: 10.1016/j.isprsjprs.2021.02.018
|
Ahmad S K, Hossain F, Eldardiry H, et al. 2020. A fusion approach for water area classification using visible, near infrared and synthetic aperture radar for South Asian conditions. IEEE Transactions on Geoscience and Remote Sensing, 58(4): 2471–2480, doi: 10.1109/TGRS.2019.2950705
|
Andréfouët S, Claereboudt M, Matsakis P, et al. 2001a. Typology of atoll rims in Tuamotu Archipelago (French Polynesia) at landscape scale using SPOT HRV images. International Journal of Remote Sensing, 22(6): 987–1004, doi: 10.1080/014311601300074522
|
Andréfouët S, Kramer P, Torres-Pulliza D, et al. 2003. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sensing of Environment, 88(1–2): 128–143, doi: 10.1016/j.rse.2003.04.005
|
Andréfouët S, Muller-Karger F E, Hochberg E J, et al. 2001b. Change detection in shallow coral reef environments using Landsat 7 ETM+ data. Remote Sensing of Environment, 78(1–2): 150–162, doi: 10.1016/S0034-4257(01)00256-5
|
Bendixen M, Lønsmann Iversen L, Anker Bjørk A, et al. 2017. Delta progradation in Greenland driven by increasing glacial mass loss. Nature, 550(7674): 101–104, doi: 10.1038/nature23873
|
Chen Chao, Chen Huixin, Liang Jintao, et al. 2022. Extraction of water body information from remote sensing imagery while considering greenness and wetness based on Tasseled Cap Transformation. Remote Sensing, 14(3): 3001
|
Chen Liang-Chieh, Papandreou G, Kokkinos I, et al. 2018. DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 834–848, doi: 10.1109/TPAMI.2017.2699184
|
Chen Hongruixuan, Wu Chen, Du Bo, et al. 2020. Change detection in multisource VHR images via deep Siamese convolutional multiple-layers recurrent neural network. IEEE Transactions on Geoscience and Remote Sensing, 58(4): 2848–2864, doi: 10.1109/TGRS.2019.2956756
|
Dai Chunli, Howat I M, Larour E, et al. 2019. Coastline extraction from repeat high resolution satellite imagery. Remote Sensing of Environment, 229: 260–270, doi: 10.1016/j.rse.2019.04.010
|
Duan Lunhao, Hu Xiangyun. 2020. Multiscale refinement network for water-body segmentation in high-resolution satellite imagery. IEEE Geoscience and Remote Sensing Letters, 17(4): 686–690, doi: 10.1109/LGRS.2019.2926412
|
Feng Quanlong, Chen Bo’an, Li Guoqing, et al. 2022b. A review for sample datasets of remote sensing imagery. National Remote Sensing Bulletin (in Chinese), 26(4): 589–605, doi: 10.11834/jrs.20221162
|
Feng Quanlong, Niu Bowen, Zhu Dehai, et al. 2022a. Review for deep learning in land use and land cover remote sensing classification. Transactions of the Chinese Society of Agricultural Machinery (in Chinese), 53(3): 1–17
|
Feng Wenqing, Sui Haigang, Huang Weiming, et al. 2019. Water body extraction from very high-resolution remote sensing imagery using Deep U-Net and a Superpixel-Based Conditional Random Field Model. IEEE Geoscience and Remote Sensing Letters, 16(4): 618–622, doi: 10.1109/LGRS.2018.2879492
|
Feyisa G L, Meilby H, Fensholt R, et al. 2014. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140: 23–35, doi: 10.1016/j.rse.2013.08.029
|
Gao Feng, Wang Xiao, Gao Yunhao, et al. 2019. Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geoscience and Remote Sensing Letters, 16(8): 1240–1244, doi: 10.1109/LGRS.2019.2895656
|
Garajeh M K, Malakyar F, Weng Qihao, et al. 2021. An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran. Science of the Total Environment, 778: 146253, doi: 10.1016/j.scitotenv.2021.146253
|
Ge Chuangjie, Xie Wenjun, Meng Lingkui. 2022. Extracting lakes and reservoirs from GF-1 satellite imagery over China using improved U-Net. IEEE Geoscience and Remote Sensing Letters, 19: 1504105
|
Geusebroek J M, Smeulders A W M, van de Weijer J. 2003. Fast anisotropic Gauss filtering. IEEE Transactions on Image Processing, 12(8): 938–943, doi: 10.1109/TIP.2003.812429
|
Gong Maoguo, Zhou Zhiqiang, Ma Jingjing. 2012. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Transactions on Image Processing, 21(4): 2141–2151, doi: 10.1109/TIP.2011.2170702
|
Hertel V, Chow C, Wani O, et al. 2023. Probabilistic SAR-based water segmentation with adapted Bayesian convolutional neural network. Remote Sensing of Environment, 285: 113388, doi: 10.1016/j.rse.2022.113388
|
Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504–507, doi: 10.1126/science.1127647
|
Hochberg E. 2003. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sensing of Environment, 85(2): 159–173, doi: 10.1016/S0034-4257(02)00201-8
|
Houborg R, McCabe M F. 2018. Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data. Remote Sensing, 10(6): 890, doi: 10.3390/rs10060890
|
Hu Hongtao, Ban Yifang. 2014. Unsupervised change detection in multitemporal SAR images over large urban areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8): 3248–3261, doi: 10.1109/JSTARS.2014.2344017
|
Islam M M, Borgqvist H, Kumar L. 2019. Monitoring mangrove forest landcover changes in the coastline of Bangladesh from 1976 to 2015. Geocarto International, 34(13): 1458–1476, doi: 10.1080/10106049.2018.1489423
|
Jiang Wei, He Guojin, Long Tengfei, et al. 2018. Multilayer perceptron neural network for surface water extraction in Landsat 8 OLI satellite images. Remote Sensing, 10(5): 755, doi: 10.3390/rs10050755
|
Karaman M. 2021. Comparison of thresholding methods for shoreline extraction from Sentinel-2 and Landsat-8 imagery: Extreme Lake Salda, track of Mars on Earth. Journal of Environmental Management, 298: 113481, doi: 10.1016/j.jenvman.2021.113481
|
Li A S, Chirayath V, Segal-Rozenhaimer M, et al. 2020. NASA NeMO-Net's convolutional neural network: mapping marine habitats with spectrally heterogeneous remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5115–5133, doi: 10.1109/JSTARS.2020.3018719
|
Li Xiang, Fu Jingying, Jiang Dong, et al. 2022a. Land use optimization in Ningbo City with a coupled GA and PLUS model. Journal of Cleaner Production, 375: 134004, doi: 10.1016/j.jclepro.2022.134004
|
Li Ruirui, Liu Wenjie, Yang Lei, et al. 2018. DeepUNet: A deep fully convolutional network for pixel-level Sea-Land segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(11): 3954–3962, doi: 10.1109/JSTARS.2018.2833382
|
Li Junjie, Meng Yizhuo, Li Yuanxi, et al. 2022b. Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning. Journal of Hydrology, 612: 128202, doi: 10.1016/j.jhydrol.2022.128202
|
Li Yangyang, Peng Cheng, Chen Yanqiao, et al. 2019. A deep learning method for change detection in synthetic aperture radar images. IEEE Transactions on Geoscience and Remote Sensing, 57(8): 5751–5763, doi: 10.1109/TGRS.2019.2901945
|
Liu Xulong, Deng Ruru, Xu Jianhui, et al. 2017. Spatiotemporal evolution characteristics of coastlines and driving force analysis of the Zhujiang River Estuary in the past 40 years. Journal of Geo-information Science, 19(10): 1336–1345
|
Lu Ming, Fang Leyuan, Li Muxing, et al. 2022. NFANet: A novel method for weakly supervised water extraction from high-resolution remote-sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 60: 5617114
|
Lunetta R S, Knight J F, Ediriwickrema J, et al. 2006. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105(2): 142–154, doi: 10.1016/j.rse.2006.06.018
|
McCarthy G D, Haigh I D, Hirschi J J M, et al. 2015. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature, 521(7553): 508–510, doi: 10.1038/nature14491
|
Mcfeeters S K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7): 1425–1432, doi: 10.1080/01431169608948714
|
Mumby P J, Edwards A J. 2002. Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sensing of Environment, 82(2–3): 248–257, doi: 10.1016/S0034-4257(02)00041-X
|
Nemni E, Bullock J, Belabbes S, et al. 2020. Fully convolutional neural network for rapid flood segmentation in synthetic aperture radar imagery. Remote Sensing, 12(16): 2532, doi: 10.3390/rs12162532
|
Ni Jun, Zhang Fan, Yin Qiang, et al. 2021. Random neighbor pixel-block-based deep recurrent learning for polarimetric SAR image classification. IEEE Transactions on Geoscience and Remote Sensing, 59(9): 7557–7569, doi: 10.1109/TGRS.2020.3037209
|
Pham B T, Bui D T, Prakash I, et al. 2017. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA, 149: 52–63, doi: 10.1016/j.catena.2016.09.007
|
Purkis S, Kenter J A M, Oikonomou E K, et al. 2002. High-resolution ground verification, cluster analysis and optical model of reef substrate coverage on Landsat TM imagery (Red Sea, Egypt). International Journal of Remote Sensing, 23(8): 1677–1698, doi: 10.1080/01431160110047722
|
Qiu Chunping, Mou Lichao, Schmitt M, et al. 2020. Fusing multiseasonal Sentinel-2 imagery for urban land cover classification with multibranch residual convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 17(10): 1787–1791, doi: 10.1109/LGRS.2019.2953497
|
Rokni K, Ahmad A, Selamat A, et al. 2014. Water feature extraction and change detection using multitemporal landsat imagery. Remote Sensing, 6(5): 4173–4189, doi: 10.3390/rs6054173
|
Saxena N, Rathore N. 2013. A review on speckle noise filtering techniques for SAR images. International Journal of Advanced Research in Computer Science and Electronics Engineering, 2(2): 243–247
|
Seo D K, Yong H K, Yang D E, et al. 2018. Fusion of SAR and multispectral images using random forest regression for change detection. ISPRS International Journal of Geo-Information, 7(10): 401, doi: 10.3390/ijgi7100401
|
Sunder S, Ramsankaran R, Ramakrishnan B. 2017. Erratum to: Inter-comparison of remote sensing-based shoreline mapping techniques at different coastal stretches of India. Environmental Monitoring and Assessment, 189(7): 334, doi: 10.1007/s10661-017-6046-8
|
Tseng S H, Sun Weihao. 2022. Sea–land segmentation using HED-UNET for monitoring Kaohsiung Port. Mathematics, 10(22): 4202, doi: 10.3390/math10224202
|
Wang Guoli, Fan Bin, Xiang Shiming, et al. 2017. Aggregating rich hierarchical features for scene classification in remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9): 4104–4115, doi: 10.1109/JSTARS.2017.2705419
|
Wang Lijuan, Niu Zheng, Zhao Degang, et al. 2010. The study of coastline extraction and validation using ETM remote sensing image. Remote Sensing Technology and Application, 25(2): 235–239
|
Wang Jin, Wu Zhifeng, Li Shaoying, et al. 2016. Coastline and land use change detection and analysis with remote sensing in the Zhujiang River Estuary Gulf. Scientia Geographica Sinica (in Chinese), 36(12): 1903–1911
|
Wang Xiaobiao, Xie Shunping, Zhang Xueliang, et al. 2018a. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 68: 73–91, doi: 10.1016/j.jag.2018.01.018
|
Wang Li, Wang Huan. 2019. Water hazard detection using conditional generative adversarial network with mixture reflection attention units. IEEE Access, 7: 167497–167506, doi: 10.1109/ACCESS.2019.2953768
|
Wang Xiaoping, Zhang Fei, Ding Jianli, et al. 2018b. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices. Science of the Total Environment, 615: 918–930, doi: 10.1016/j.scitotenv.2017.10.025
|
Wei Jiawei, Feng Lian, Tong Yan, et al. 2023. Long-term observation of global nuclear power plants thermal plumes using Landsat images and deep learning. Remote Sensing of Environment, 295: 113707, doi: 10.1016/j.rse.2023.113707
|
Wei Qinyu, Nurmemet I, Gao Minhua, et al. 2022. Inversion of soil salinity using multisource remote sensing data and particle swarm machine learning models in Keriya Oasis, Northwestern China. Remote Sensing, 14(3): 512, doi: 10.3390/rs14030512
|
Weng Liguo, Xu Yiming, Xia Min, et al. 2020. Water areas segmentation from remote sensing images using a separable residual SegNet network. ISPRS International Journal of Geo-Information, 9(4): 256, doi: 10.3390/ijgi9040256
|
Wieland M, Martinis S, Kiefl R, et al. 2023. Semantic segmentation of water bodies in very high-resolution satellite and aerial images. Remote Sensing of Environment, 287: 113452, doi: 10.1016/j.rse.2023.113452
|
Xie Huarong, Xu Qing, Zheng Quanan, et al. 2022. Assessment of theoretical approaches to derivation of internal solitary wave parameters from multi-satellite images near the Dongsha Atoll of the South China Sea. Acta Oceanologica Sinica, 41(6): 137–145, doi: 10.1007/s13131-022-2015-3
|
Xu Hanqiu. 2005. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Journal of Remote Sensing (in Chinese), 9(5): 589–595
|
Xue Weibao, Yang Hui, Wu Yanlan, et al. 2021. Water body automated extraction in polarization SAR images with dense-coordinate-feature-concatenate network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 12073–12087, doi: 10.1109/JSTARS.2021.3129182
|
Yang Chenchen, Gan Huayang, Wan Rongsheng, et al. 2021. Spatiotemporal evolution and influencing factors of coastline in the Guangdong-Hong Kong-Macao Greater Bay Area from 1975 to 2018. Geology in China (in Chinese), 48(3): 697–707
|
Yang Xiucheng, Qin Qiming, Grussenmeyer P, et al. 2018. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sensing of Environment, 219: 259–270, doi: 10.1016/j.rse.2018.09.016
|
Yang Jiechao, Wang Xuelei, Wang Ruihua, et al. 2020. Combination of convolutional neural networks and recurrent neural networks for predicting soil properties using VIS–NIR spectroscopy. Geoderma, 380: 114616, doi: 10.1016/j.geoderma.2020.114616
|
Yao Fangfang, Wang Jida, Wang Chao, et al. 2019. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery. Remote Sensing of Environment, 232: 111210, doi: 10.1016/j.rse.2019.111210
|
Yousif O, Ban Yifang. 2014. Improving SAR-based urban change detection by combining MAP-MRF classifier and nonlocal means similarity weights. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10): 4288–4300, doi: 10.1109/JSTARS.2014.2347171
|
Zhang Fan, Du Bo, Zhang Liangpei. 2016. Scene classification via a gradient boosting random convolutional network framework. IEEE Transactions on Geoscience and Remote Sensing, 54(3): 1793–1802, doi: 10.1109/TGRS.2015.2488681
|
Zhang Qianqian, Li Li, Sun Ruizhi, et al. 2022b. Retrieval of the soil salinity from Sentinel-1 Dual-Polarized SAR data based on deep neural network regression. IEEE Geoscience and Remote Sensing Letters, 19: 4006905
|
Zhang Zhengxin, Liu Qingjie, Wang Yunhong. 2018. Road extraction by deep residual U-Net. IEEE Geoscience and Remote Sensing Letters, 15(5): 749–753, doi: 10.1109/LGRS.2018.2802944
|
Zhang Tianyuan, Ren Huazhong, Qin Qiming, et al. 2017b. Surface water extraction from Landsat 8 OLI imagery using the LBV transformation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10): 4417–4429, doi: 10.1109/JSTARS.2017.2719029
|
Zhang Guanjin, Roslan S N A B, Wang Ci, et al. 2023. Research on land cover classification of multi-source remote sensing data based on improved U-net network. Scientific Reports, 13(1): 16275, doi: 10.1038/s41598-023-43317-1
|
Zhang Zhimian, Wang Haipeng, Xu Feng, et al. 2017a. Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(12): 7177–7188, doi: 10.1109/TGRS.2017.2743222
|
Zhang Jinsong, Xing Mengdao, Sun Guangcai, et al. 2021. Water body detection in high-resolution SAR images with cascaded fully-convolutional network and variable focal loss. IEEE Transactions on Geoscience and Remote Sensing, 59(1): 316–332, doi: 10.1109/TGRS.2020.2999405
|
Zhang Lin, Yuan Feiniu, Zhang Wenrui, et al. 2020. Review of fully convolutional neural network. Computer Engineering and Applications (in Chinese), 56(1): 25–37
|
Zhang Shihe, Zhong Quanlin, Cheng Dongliang, et al. 2022a. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecological Indicators, 136: 108642, doi: 10.1016/j.ecolind.2022.108642
|
Zhao Wenzhi, Du Shihong. 2016. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 113: 155–165, doi: 10.1016/j.isprsjprs.2016.01.004
|