Volume 42 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
Zhenxia Liu, Pei Du, Zengjie Wang, Binru Zhao, Wen Luo, Zhaoyuan Yu, Linwang Yuan. Coastal phytoplankton blooms and multivariate analysis with meteorological factors and climate oscillation signals in western North Pacific[J]. Acta Oceanologica Sinica, 2024, 43(12): 85-101. doi: 10.1007/s13131-024-2420-x
Citation: Zhenxia Liu, Pei Du, Zengjie Wang, Binru Zhao, Wen Luo, Zhaoyuan Yu, Linwang Yuan. Coastal phytoplankton blooms and multivariate analysis with meteorological factors and climate oscillation signals in western North Pacific[J]. Acta Oceanologica Sinica, 2024, 43(12): 85-101. doi: 10.1007/s13131-024-2420-x

Coastal phytoplankton blooms and multivariate analysis with meteorological factors and climate oscillation signals in western North Pacific

doi: 10.1007/s13131-024-2420-x
Funds:  The National Natural Science Foundation of China under contract Nos 42230406, 42130103 and 42376223.
More Information
  • Corresponding author: E-mail: yuzhaoyuan@njnu.edu.cn
  • Received Date: 2024-03-17
  • Accepted Date: 2024-11-21
  • Available Online: 2025-01-18
  • Publish Date: 2024-12-01
  • Phytoplankton blooms are complex environmental phenomena driven by multiple factors. Understanding their relationships with meteorological factors and climate oscillations is essential for advancing data-driven and hybrid statistical-dynamical models. However, these relationships have rarely been investigated across different temporal scales. This study employs wavelet transform coherence and multiple wavelet coherence to examine the multiscale and multivariate relationships between phytoplankton blooms, meteorological factors, and climate oscillations in eight large marine ecosystems of the western North Pacific. The results reveal that all phytoplankton blooms in the studied ecosystems exhibit significant annual oscillations, while seasonal climate patterns demonstrate either unimodal or bimodal distributions. A comparison of the wavelet transform coherence and multiple wavelet coherence results indicates that meteorological factors primarily drive short-period variations in phytoplankton blooms, whereas climate oscillations exert more influence on long-term changes. The explanation of phytoplankton blooms increases as the driver factors increase, but there are also some decreasing due to the collinearity between different factors. The sea-air temperature difference emerges as the most significant driving factor, with its mechanisms varying across marine ecosystems: one type influences mixed-layer depth, while the other arises from interspecific differences in temperature sensitivity. Furthermore, the results underscore the importance of integrating non-dominant large-scale circulation indices with predominant meteorological factors for a more comprehensive understanding.
  • loading
  • Allan R J, Nicholls N, Jones P D, et al. 1991. A further extension of the Tahiti-Darwin SOI, early ENSO events and Darwin pressure. Journal of Climate, 4(7): 743–749, doi: 10.1175/1520-0442(1991)004<0743:AFEOTT>2.0.CO;2
    Beardall J, Young E, Roberts S. 2001. Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences, 63(1): 44–69, doi: 10.1007/PL00001344
    Behrenfeld M J, O’Malley R T, Siegel D A, et al. 2006. Climate-driven trends in contemporary ocean productivity. Nature, 444(7120): 752–755, doi: 10.1038/nature05317
    Behrenfeld M J, Randerson J T, McClain C R, et al. 2001. Biospheric primary production during an ENSO transition. Science, 291(5513): 2594–2597, doi: 10.1126/science.1055071
    Blauw A N, Benincà E, Laane R W P M, et al. 2018. Predictability and environmental drivers of chlorophyll fluctuations vary across different time scales and regions of the North Sea. Progress in Oceanography, 161: 1–18, doi: 10.1016/j.pocean.2018.01.005
    Boyce D G, Lewis M R, Worm B. 2010. Global phytoplankton decline over the past century. Nature, 466(7306): 591–596, doi: 10.1038/nature09268
    Cannon A J. 2015. Revisiting the nonlinear relationship between ENSO and winter extreme station precipitation in North America. International Journal of Climatology, 35(13): 4001–4014, doi: 10.1002/joc.4263
    Carstensen J, Klais R, Cloern J E. 2015. Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species. Estuarine, Coastal and Shelf Science, 162: 98-109
    Charlier J B, Ladouche B, Maréchal J C. 2015. Identifying the impact of climate and anthropic pressures on karst aquifers using wavelet analysis. Journal of Hydrology, 523: 610–623, doi: 10.1016/j.jhydrol.2015.02.003
    Colijn F, Cadée G C. 2003. Is phytoplankton growth in the Wadden Sea light or nitrogen limited?. Journal of Sea Research, 49(2): 83–93, doi: 10.1016/S1385-1101(03)00002-9
    Dai Yanhui, Yang Shangbo, Zhao Dan, et al. 2023. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature, 615(7951): 280–284, doi: 10.1038/s41586-023-05760-y
    Dang Xiaoyan, Chen Xiaoyan, Bai Yan, et al. 2020. Impact of ENSO events on phytoplankton over the Sulu Ridge. Marine Environmental Research, 157: 104934, doi: 10.1016/j.marenvres.2020.104934
    Defriez E J, Sheppard L W, Reid P C, et al. 2016. Climate change-related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea. Global Change Biology, 22(6): 2069–2080, doi: 10.1111/gcb.13229
    Detto M, Wright S J, Calderón O, et al. 2018. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nature Communications, 9(1): 913, doi: 10.1038/s41467-018-03306-9
    Doan-Nhu H, Nguyen-Ngoc L, Nguyen C T. 2016. ENSO and anthropogenic impacts on phytoplankton diversity in tropical coastal waters. Progress in Oceanography, 140: 1–13, doi: 10.1016/j.pocean.2015.10.004
    Glé C, Del Amo Y, Bec B, et al. 2007. Typology of environmental conditions at the onset of winter phytoplankton blooms in a shallow macrotidal coastal ecosystem, Arcachon Bay (France). Journal of Plankton Research, 29(11): 999–1014, doi: 10.1093/plankt/fbm074
    Gobena A K, Gan T Y. 2013. Assessment of trends and possible climate change impacts on summer moisture availability in western Canada based on metrics of the palmer drought severity index. Journal of Climate, 26(13): 4583–4595, doi: 10.1175/JCLI-D-12-00421.1
    Grinsted A, Moore J C, Jevrejeva S. 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6): 561–566, doi: 10.5194/npg-11-561-2004
    Henson S A, Dunne J P, Sarmiento J L. 2009. Decadal variability in North Atlantic phytoplankton blooms. Journal of Geophysical Research: Oceans, 114(C4): C04013
    Higgins R W, Leetmaa A, Kousky V E. 2002. Relationships between climate variability and winter temperature extremes in the United States. Journal of Climate, 15(13): 1555–1572, doi: 10.1175/1520-0442(2002)015<1555:RBCVAW>2.0.CO;2
    Higgins R W, Leetmaa A, Xue Y, et al. 2000. Dominant factors influencing the seasonal predictability of U. S. precipitation and surface air temperature. Journal of Climate, 13(22): 3994–4017, doi: 10.1175/1520-0442(2000)013<3994:DFITSP>2.0.CO;2
    Hou Xuejiao, Feng Lian, Dai Yanhui, et al. 2022. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nature Geoscience, 15(2): 130–134, doi: 10.1038/s41561-021-00887-x
    Hu Wei, Si Bingcheng. 2016. Technical note: multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrology and Earth System Sciences, 20(8): 3183–3191, doi: 10.5194/hess-20-3183-2016
    Hu Wei, Si Bingcheng, Biswas A, et al. 2017. Temporally stable patterns but seasonal dependent controls of soil water content: evidence from wavelet analyses. Hydrological Processes, 31(21): 3697–3707, doi: 10.1002/hyp.11289
    Isoguchi O, Kawamura H. 2006. MJO-related summer cooling and phytoplankton blooms in the South China Sea in recent years. Geophysical Research Letters, 33(16): 615
    Jia Cun, Wang Lei, Zhang Youquan, et al. 2023. Diel variation in phytoplankton biomass driven by hydrological factors at three coastal monitoring buoy stations in the Taiwan Strait. Journal of Marine Science and Engineering, 11(12): 2252, doi: 10.3390/jmse11122252
    Jochum M, Yeager S, Lindsay K, et al. 2010. Quantification of the feedback between phytoplankton and ENSO in the community climate system model. Journal of Climate, 23(11): 2916–2925, doi: 10.1175/2010JCLI3254.1
    Koeller P, Fuentes-Yaco C, Platt T, et al. 2009. Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean. Science, 324(5928): 791–793, doi: 10.1126/science.1170987
    Labat D. 2005. Recent advances in wavelet analyses: Part 1. A review of concepts. Journal of Hydrology, 314(1): 275–288
    Labat D. 2006. Oscillations in land surface hydrological cycle. Earth and Planetary Science Letters, 242(1): 143–154
    Levine A F Z, McPhaden M J. 2016. How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophysical Research Letters, 43(12): 6503–6510, doi: 10.1002/2016GL069204
    Li Shuanglin, Bates G T. 2007. Influence of the Atlantic Multidecadal oscillation on the winter climate of East China. Advances in Atmospheric Sciences, 24(1): 126–135, doi: 10.1007/s00376-007-0126-6
    Liu Huixin, Lühr H, Watanabe S. 2007. Climatology of the equatorial thermospheric mass density anomaly. Journal of Geophysical Research: Space Physics, 112(A5): A05305
    Liu Zhenxia, Wang Zengjie, Wang Jian, et al. 2023. An improved method of the Globally Resolved Energy Balance model by the Bayesian networks. Geoscientific Model Development, 16(10): 2939–2955, doi: 10.5194/gmd-16-2939-2023
    Liu Zhenxia, Wang Zengjie, Zhao Binru, et al. 2024. Teleconnection between coastal phytoplankton blooms phenomenon in western North Pacific and El Niño–southern oscillation by time-frequency analysis. Journal of Geophysical Research: Oceans, 129(4): e2023JC020856, doi: 10.1029/2023JC020856
    Lu Riyu, Dong Buwen, Ding Hui. 2006. Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophysical Research Letters, 33(24): 701
    Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40–50 day period. Journal of the Atmospheric Sciences, 29(6): 1109–1123, doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    Mantua N J, Hare S R. 2002. The Pacific decadal oscillation. Journal of Oceanography, 58(1): 35–44, doi: 10.1023/A:1015820616384
    McCarthy G D, Haigh I D, Hirschi J J M, et al. 2015. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature, 521(7553): 508–510, doi: 10.1038/nature14491
    Menge B A, Chan F, Nielsen K J, et al. 2009. Climatic variation alters supply-side ecology: impact of climate patterns on phytoplankton and mussel recruitment. Ecological Monographs, 79(3): 379–395, doi: 10.1890/08-2086.1
    Okunishi T, Kishi M J, Shiomoto A, et al. 2005. An ecosystem modeling study of spatio-temporal variations of phytoplankton distribution in the Okhotsk Sea. Continental Shelf Research, 25(12): 1605–1628
    Paerl H W, Hall N S, Calandrino E S. 2011. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 409(10): 1739–1745, doi: 10.1016/j.scitotenv.2011.02.001
    Paerl H W, Paul V J. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research, 46(5): 1349–1363, doi: 10.1016/j.watres.2011.08.002
    Platt T, Fuentes-Yaco C, Frank K T. 2003. Spring algal bloom and larval fish survival. Nature, 423(6938): 398–399
    Polovina J J, Howell E A, Abecassis M. 2008. Ocean’s least productive waters are expanding. Geophysical Research Letters, 35(3): L03618
    Rabalais N N, Turner R E, Díaz R J, et al. 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 66(7): 1528–1537, doi: 10.1093/icesjms/fsp047
    Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14): 4407
    Saji N H, Yamagata T. 2003. Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25: 151–169, doi: 10.3354/cr025151
    Santos M, Amorim A, Brotas V, et al. 2022. Spatio-temporal dynamics of phytoplankton community in a well-mixed temperate estuary (Sado Estuary, Portugal). Scientific Reports, 12(1): 1–18, doi: 10.1038/s41598-021-99269-x
    Santos M, Moita M T, Oliveira P B, et al. 2021. Phytoplankton communities in two wide-open bays in the Iberian upwelling system. Journal of Sea Research, 167: 101982, doi: 10.1016/j.seares.2020.101982
    Shi Jinhui, Gao Huiwang, Zhang Jing, et al. 2012. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China. Journal of Geophysical Research: Atmospheres, 117(D17): 304
    Siswanto E, Ye Haijun, Yamazaki D, et al. 2017. Detailed spatiotemporal impacts of El Niño on phytoplankton biomass in the South China Sea. Journal of Geophysical Research: Oceans, 122(4): 2709–2723, doi: 10.1002/2016JC012276
    Sommer U, Lengfellner K. 2008. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Global Change Biology, 14(6): 1199–1208, doi: 10.1111/j.1365-2486.2008.01571.x
    Su Lu, Miao Chiyuan, Duan Qingyun, et al. 2019. Multiple-wavelet coherence of world’s large rivers with meteorological factors and ocean signals. Journal of Geophysical Research: Atmospheres, 124(9): 4932–4954, doi: 10.1029/2018JD029842
    Sun Jiazhen, Wang Tifeng, Huang Ruiping, et al. 2022. Enhancement of diatom growth and phytoplankton productivity with reduced O2 availability is moderated by rising CO2. Communications Biology, 5(1): 1–12, doi: 10.1038/s42003-021-02997-z
    Tang Shilin, Dong Qing, Liu Fenfen. 2011. Climate-driven chlorophyll-a concentration interannual variability in the South China Sea. Theoretical and Applied Climatology, 103(1): 229–237
    Torrence C, Compo G P. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1): 61–78, doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    Trombetta T, Vidussi F, Mas S, et al. 2019. Water temperature drives phytoplankton blooms in coastal waters. PLoS One, 14(4): e0214933, doi: 10.1371/journal.pone.0214933
    Van de Waal D B, Litchman E. 2020. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1798): 20190706, doi: 10.1098/rstb.2019.0706
    Vidussi F, Mostajir B, Fouilland E, et al. 2011. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnology and Oceanography, 56(1): 206–218, doi: 10.4319/lo.2011.56.1.0206
    Villafañe V E, Banaszak A T, Guendulain-García S D, et al. 2013. Influence of seasonal variables associated with climate change on photochemical diurnal cycles of marine phytoplankton from Patagonia (Argentina). Limnology and Oceanography, 58(1): 203–214, doi: 10.4319/lo.2013.58.1.0203
    Waltham N J, Elliott M, Lee S Y, et al. 2020. UN decade on ecosystem restoration 2021–2030—what chance for success in restoring coastal ecosystems?. Frontiers in Marine Science, 7: 71, doi: 10.3389/fmars.2020.00071
    Wang Jianglin, Yang Bao, Ljungqvist F C, et al. 2013. The relationship between the Atlantic Multidecadal Oscillation and temperature variability in China during the last millennium. Journal of Quaternary Science, 28(7): 653–658, doi: 10.1002/jqs.2658
    Wolter K, Timlin M S. 2011. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext). International Journal of Climatology, 31(7): 1074–1087, doi: 10.1002/joc.2336
    Wu Aiming, Hsieh W W, Shabbar A, et al. 2006. The nonlinear association between the Arctic Oscillation and North American winter climate. Climate Dynamics, 26(7): 865–879
    Xiao Rushui, Gao Guandong, Yang Dezhou, et al. 2024. The impact of extreme precipitation on physical and biogeochemical processes regarding with nutrient dynamics in a semi-closed bay. Science of the Total Environment, 906: 167599, doi: 10.1016/j.scitotenv.2023.167599
    Xiao Xi, He Junyu, Yu Yan, et al. 2019. Teleconnection between phytoplankton dynamics in north temperate lakes and global climatic oscillation by time-frequency analysis. Water Research, 154: 267–276, doi: 10.1016/j.watres.2019.01.056
    Zhang Chidong. 2005. Madden-Julian oscillation. Reviews of Geophysics, 43(2): RG2003
    Zhang C, Adames Á F, Khouider B, et al. 2020. Four theories of the Madden-Julian oscillation. Reviews of Geophysics, 58(3): e2019RG000685, doi: 10.1029/2019RG000685
    Zheng Kai, Wei Jianzhou, Pei Jiuying, et al. 2019. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Science of the Total Environment, 660: 236–244, doi: 10.1016/j.scitotenv.2019.01.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (60) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return