Citation: | Xiaochun Zou, Yunhai Li, Liang Wang, Mohammad Kawser Ahmed, Keliang Chen, Jianwei Wu, Yonghang Xu, Yunpeng Lin, Baohong Chen, Kankan Wu, Jinwen Liu. When river meets ocean: distribution and conversion of suspended organic particles in a Sundarbans mangrove river-estuary system, Bangladesh[J]. Acta Oceanologica Sinica, 2024, 43(10): 63-73. doi: 10.1007/s13131-024-2412-x |
Abdullah A N M, Stacey N, Garnett S T, et al. 2016. Economic dependence on mangrove forest resources for livelihoods in the Sundarbans, Bangladesh. Forest Policy and Economics, 64: 15–24, doi: 10.1016/j.forpol.2015.12.009
|
Abril G, Nogueira M, Etcheber H, et al. 2002. Behaviour of organic carbon in nine contrasting European estuaries. Estuarine, Coastal and Shelf Science, 54(2): 241–262
|
Alongi D M. 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6: 195–219, doi: 10.1146/annurev-marine-010213-135020
|
Atwood T B, Connolly R M, Almahasheer H, et al. 2017. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7): 523–528, doi: 10.1038/nclimate3326
|
Bianchi T S, Cui Xingqian, Blair N E, et al. 2018. Centers of organic carbon burial and oxidation at the land-ocean interface. Organic Geochemistry, 115: 138–155, doi: 10.1016/j.orggeochem.2017.09.008
|
Bouillon S, Borges A V, Castañeda-Moya E, et al. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22(2): GB2013
|
Bouillon S, Connolly R M. 2009. Carbon exchange among tropical coastal ecosystems. In: Nagelkerken E, ed. Ecological Connectivity among Tropical Coastal Ecosystems. Dordrecht: Springer, 45–70
|
Chai Minwei, Li Ruili, Zan Qijie. 2017. Effects of mangrove plants on heavy metal risk in sediment based on SEM-AVS analysis. Regional Studies in Marine Science, 13: 12–18, doi: 10.1016/j.rsma.2017.03.008
|
Chatterjee M, Shankar D, Sen G K, et al. 2013. Tidal variations in the Sundarbans Estuarine System, India. Journal of Earth System Science, 122(4): 899–933, doi: 10.1007/s12040-013-0314-y
|
Chen Dongxing, He Lei, Liu Fenfen, et al. 2017. Effects of typhoon events on chlorophyll and carbon fixation in different regions of the East China Sea. Estuarine, Coastal and Shelf Science, 194: 229–239
|
Das S, Ganguly D, Chakraborty S, et al. 2020. The first report of Glomalin from the Sundarban Mangrove Biosphere Reserve, India, a long-term sediment carbon storage. Regional Studies in Marine Science, 39: 101398, doi: 10.1016/j.rsma.2020.101398
|
Dietrich M, Best K B, Raff J L, et al. 2020. A first-order geochemical budget for suspended sediment discharge to the Bay of Bengal from the Ganges-Brahmaputra River system. Science of the Total Environment, 726: 138667, doi: 10.1016/j.scitotenv.2020.138667
|
Dittmar T, Hertkorn N, Kattner G, et al. 2006. Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochemical Cycles, 20(1): B1012
|
Donato D C, Kauffman J B, Murdiyarso D, et al. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5): 293–297, doi: 10.1038/ngeo1123
|
Duarte C M, Middelburg J J, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2(1): 1–8, doi: 10.5194/bg-2-1-2005
|
Gillis L G, Ziegler A D, Van Oevelen D, et al. 2014. Tiny is mighty: Seagrass beds have a large role in the export of organic material in the tropical coastal zone. PLoS One, 9(11): e111847, doi: 10.1371/journal.pone.0111847
|
Giri C, Ochieng E, Tieszen L L, et al. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1): 154–159, doi: 10.1111/j.1466-8238.2010.00584.x
|
Gordon E S, Goñi M A. 2003. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochimica et Cosmochimica Acta, 67(13): 2359–2375, doi: 10.1016/S0016-7037(02)01412-6
|
Harrison J A, Caraco N, Seitzinger S P. 2005. Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochemical Cycles, 19(4): BS404
|
Hedges J I, Keil R G. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49(2–3): 81–115, doi: 10.1016/0304-4203(95)00008-F
|
Hedges J I, Keil R G, Benner R. 1997. What happens to terrestrial organic matter in the ocean?. Organic Geochemistry, 27(5–6): 195–212, doi: 10.1016/S0146-6380(97)00066-1
|
Herman P M J, Heip C H R. 1999. Biogeochemistry of the maximum turbidity zone of estuaries (MATURE): some conclusions. Journal of Marine Systems, 22(2–3): 89–104, doi: 10.1016/S0924-7963(99)00034-2
|
Hyndes G A, Nagelkerken I, Mcleod R J, et al. 2014. Mechanisms and ecological role of carbon transfer within coastal seascapes. Biological Reviews, 89(1): 232–254, doi: 10.1111/brv.12055
|
Jennerjahn T C, Ittekkot V. 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften, 89(1): 23–30, doi: 10.1007/s00114-001-0283-x
|
Khan M, Amin M. 2019. Macro nutrient status of Sundarbans forest soils in southern region of Bangladesh. Bangladesh Journal of Scientific and Industrial Research, 54(1): 67–72, doi: 10.3329/bjsir.v54i1.40732
|
Li Huan, Chai Liyuan, Yang Zhihui, et al. 2019. Seasonal and spatial contamination statuses and ecological risk of sediment cores highly contaminated by heavy metals and metalloids in the Xiangjiang River. Environmental Geochemistry and Health, 41(3): 1617–1633, doi: 10.1007/s10653-019-00245-2
|
Lin Yunpeng, Li Yunhai, Zheng Binxin, et al. 2019. Evolution of sedimentary organic matter in a small river estuary after the typhoon process: A case study of Quanzhou Bay. Science of the Total Environment, 686: 290–300, doi: 10.1016/j.scitotenv.2019.05.452
|
Liu Shengfa, Wu Bin, Seddique A A, et al. 2020. Distribution, sources and chemical screening-level assessment of toxic metals in the northern Bay of Bengal, Bangladesh. Marine Pollution Bulletin, 150: 110676, doi: 10.1016/j.marpolbul.2019.110676
|
Lovelock C E, Duarte C M. 2019. Dimensions of Blue Carbon and emerging perspectives. Biology Letters, 15(3): 20180781, doi: 10.1098/rsbl.2018.0781
|
Lu Taian, Wang Houjie, Wu Xiao, et al. 2022. Transport of particulate organic carbon in the lower Yellow River (Huanghe) as modulated by dam operation. Global and Planetary Change, 217: 103948, doi: 10.1016/j.gloplacha.2022.103948
|
Ludwig W, Probst J L, Kempe S. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles, 10(1): 23–41, doi: 10.1029/95GB02925
|
Macreadie P I, Anton A, Raven J A, et al. 2019. The future of Blue Carbon science. Nature Communications, 10: 3998, doi: 10.1038/s41467-019-11693-w
|
Meybeck M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282(4): 401–450, doi: 10.2475/ajs.282.4.401
|
Milliman J D, Syvitski J P M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 100(5): 525–544, doi: 10.1086/629606
|
Mukhopadhyay S K, Biswas H, De T K, et al. 2006. Fluxes of nutrients from the tropical River Hooghly at the land–ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India. Journal of Marine Systems, 62(1–2): 9–21, doi: 10.1016/j.jmarsys.2006.03.004
|
Pang Yu, Wang Kai, Sun Yongge, et al. 2021. Linking the unique molecular complexity of dissolved organic matter to flood period in the Yangtze River mainstream. Science of the Total Environment, 764: 142803, doi: 10.1016/j.scitotenv.2020.142803
|
Rahman M S, Donoghue D N M, Bracken L J. 2021. Is soil organic carbon underestimated in the largest mangrove forest ecosystems? Evidence from the Bangladesh sundarbans. Catena, 200: 105159, doi: 10.1016/j.catena.2021.105159
|
Rahman M M, Khan N I, Hoque A K F, et al. 2015. Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management, 23(2): 269–283, doi: 10.1007/s11273-014-9379-x
|
Ranjan P, Ramanathan A L, Kumar A, et al. 2018. Trace metal distribution, assessment and enrichment in the surface sediments of Sundarban mangrove ecosystem in India and Bangladesh. Marine Pollution Bulletin, 127: 541–547, doi: 10.1016/j.marpolbul.2017.11.047
|
Ray R, Baum A, Rixen T, et al. 2018. Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. Science of the Total Environment, 621: 535–547, doi: 10.1016/j.scitotenv.2017.11.225
|
Ray R, Ganguly D, Chowdhury C, et al. 2011. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmospheric Environment, 45(28): 5016–5024, doi: 10.1016/j.atmosenv.2011.04.074
|
Ray R, Rixen T, Baum A, et al. 2015. Distribution, sources and biogeochemistry of organic matter in a mangrove dominated estuarine system (Indian Sundarbans) during the pre-monsoon. Estuarine, Coastal and Shelf Science, 167: 404–413
|
Ray R, Shahraki M. 2016. Multiple sources driving the organic matter dynamics in two contrasting tropical mangroves. Science of the Total Environment, 571: 218–227, doi: 10.1016/j.scitotenv.2016.07.157
|
Trefry J H, Metz S, Nelsen T A, et al. 1994. Transport of particulate organic carbon by the Mississippi River and its fate in the Gulf of Mexico. Estuaries, 17(4): 839–849, doi: 10.2307/1352752
|
Viers J, Dupré B, Gaillardet J. 2009. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Science of the Total Environment, 407(2): 853–868, doi: 10.1016/j.scitotenv.2008.09.053
|
Wang Chuanyuan, Lv Yingchun, Li Yuanwei. 2018. Riverine input of organic carbon and nitrogen in water-sediment system from the Yellow River estuary reach to the coastal zone of Bohai Sea, China. Continental Shelf Research, 157: 1–9, doi: 10.1016/j.csr.2018.02.004
|
Yuan Huamao, Song Jinming, Li Xuegang, et al. 2012. Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea. Marine Pollution Bulletin, 64(10): 2151–2159, doi: 10.1016/j.marpolbul.2012.07.040
|
Zeng Jie, Han Guilin, Wu Qixin, et al. 2019. Heavy metals in suspended particulate matter of the Zhujiang River, southwest China: contents, sources, and health risks. International Journal of Environmental Research and Public Health, 16(10): 1843, doi: 10.3390/ijerph16101843
|
Zhai Weidong, Dai Minhan, Cai Weijun, et al. 2005. The partial pressure of carbon dioxide and air–sea fluxes in the northern South China Sea in spring, summer and autumn. Marine Chemistry, 96(1–2): 87–97, doi: 10.1016/j.marchem.2004.12.002
|
Zhang Yifan, Li Dewang, Wang Kui, et al. 2019. Contribution of biological effects to the carbon sources/sinks and the trophic status of the ecosystem in the Changjiang (Yangtze) River estuary plume in summer as indicated by net ecosystem production variations. Water, 11(6): 1264, doi: 10.3390/w11061264
|
Zhang J, Wu Y, Jennerjahn T C, et al. 2007. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: implications for source discrimination and sedimentary dynamics. Marine Chemistry, 106(1–2): 111–126, doi: 10.1016/j.marchem.2007.02.003
|
Zhao Shou, Feng Chenghong, Wang Dongxin, et al. 2013. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation. Chemosphere, 91(7): 977–984, doi: 10.1016/j.chemosphere.2013.02.001
|
Zou Xiaochun, Li Yunhai, Wang Liang, et al. 2022. Distribution and assessment of heavy metals in suspended particles in the Sundarban mangrove river, Bangladesh. Marine Pollution Bulletin, 181: 113856, doi: 10.1016/j.marpolbul.2022.113856
|