Volume 42 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
Tianyu Wang, Zenghong Liu, Yan Du. A synthetic autonomous profiling float array in a Lagrangian particle tracking system[J]. Acta Oceanologica Sinica, 2024, 43(12): 34-46. doi: 10.1007/s13131-024-2395-7
Citation: Tianyu Wang, Zenghong Liu, Yan Du. A synthetic autonomous profiling float array in a Lagrangian particle tracking system[J]. Acta Oceanologica Sinica, 2024, 43(12): 34-46. doi: 10.1007/s13131-024-2395-7

A synthetic autonomous profiling float array in a Lagrangian particle tracking system

doi: 10.1007/s13131-024-2395-7
Funds:  The National Natural Science Foundation of China under contract Nos 42106022 and 42106024; the National Key Research and Development Program of China under contract No. 2021YFC3101502; the Fund of Laoshan Laboratory under contract No. LSKJ202201500; the Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) under contract No. SML2021SP102; the Fund of Chinese Academy of Sciences under contract Nos 133244KYSB20190031, 183311KYSB20200015, and SCSIO202201.
More Information
  • Corresponding author: E-mail: zliu@sio.org.cn;duyan@scsio.ac.cn
  • Received Date: 2024-06-19
  • Accepted Date: 2024-09-12
  • Rev Recd Date: 2024-09-12
  • Available Online: 2025-01-11
  • Publish Date: 2024-12-01
  • Over the past two decades, numerous countries have actively participated in the International Argo Program, working toward the global “OneArgo” goal. China’s Argo program has deployed over 500 autonomous profiling floats in the Indo-Pacific, with 55 Beidou (BD) floats, equipped with the Beidou satellite communication system, currently operational. During the operation of the BD float network, we found that in addition to the limitation of floats battery, the loss may also be caused by communication loss due to the floats escaping from the Beidou-2’s short message coverage. In this study, float trajectories are simulated using velocity fields from an eddy-resolved resolution Estimating the Circulation and Climate of the Ocean, Phase Ⅱ (ECCO2) model and a Lagrangian particle tracking model programmed to represent the vertical motions of profiling floats. The simulations can help to explore both the representativeness and the predictability of profiling float displacements. By deploying a large number of synthetic floats in the Lagrangian particle tracking system, we construct probability density functions (PDFs) of the simulated-float trajectory among key oceans, for example, a joint region of East Indian−South China Sea−Northwest Pacific Ocean (5°–40°N, 70°–140°E), which is generally similar to the location of the present BD float network. These statistics can help to estimate the chance of floats drifting into shallow seas (such as the East China Sea) and out of the coverage of the Beidou satellite communication. With this knowledge changes to the future China’s Argo observing system could be made.
  • loading
  • Batchelor G K. 1952. The effect of homogeneous turbulence on material lines and surfaces. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 213(1114): 349–366, doi: 10.1098/rspa.1952.0130
    Chai Fei, Johnson K S, Claustre H, et al. 2020. Monitoring ocean biogeochemistry with autonomous platforms. Nature Reviews Earth & Environment, 1(6): 315–326
    Chen Jiaqiang, Gong Xun, Guo Xinyu, et al. 2022. Improved perceptron of subsurface chlorophyll maxima by a deep neural network: a case study with BGC-Argo float data in the northwestern Pacific Ocean. Remote Sensing, 14(3): 632, doi: 10.3390/rs14030632
    Claustre H, Johnson K S, Takeshita Y. 2020. Observing the global ocean with biogeochemical-Argo. Annual Review of Marine Science, 12(1): 23–48, doi: 10.1146/annurev-marine-010419-010956
    Du Yan, Zhang Lianyi, Zhang Yuhong, 2019. Review of the tropical gyre in the Indian Ocean with its impact on heat and salt transport and regional climate modes. Advances in Earth Science (in Chinese), 34(3): 243–254
    Hunter J R, Craig P D, Phillips H E, 1993. On the use of random walk models with spatially variable diffusivity. Journal of Computational Physics, 106(2): 366–376, doi: 10.1016/S0021-9991(83)71114-9
    Kinderman A J, Monahan J F. 1977. Computer generation of random variables using the ratio of uniform deviates. ACM Transactions on Mathematical Software, 3(3): 257–260, doi: 10.1145/355744.355750
    Johnson K S, Claustre H. 2016. Bringing biogeochemistryinto the Argo age. Eos Transactions American Geophysical Union, 97: 407–435, doi: 10.1029/2016EO051467
    Li Bofeng, Zhang Zhiteng, Zang Nan, et al. 2019. High-precision GNSS ocean positioning with BeiDou short-message communication. Journal of Geodesy, 93(2): 125–139, doi: 10.1007/s00190-018-1145-z
    Lien R C, Sanford T B, Carlson J A, et al. 2016. Autonomous microstructure EM-APEX floats. Methods in Oceanography, 17: 282–295, doi: 10.1016/j.mio.2016.09.003
    Liu Qinyu, Kaneko A, Jilan S. 2008. Recent progress in studies of the South China Sea circulation. Journal of Oceanography, 64(5): 753–762, doi: 10.1007/s10872-008-0063-8
    Liu Zenghong, Li Zhaoqin, Lu Shaolei, et al. 2021. Scattered dataset of global ocean temperature and salinity profiles from the international Argo program. Journal of Global Change Data & Discovery, 5(3): 312–321, doi: 10.3974/geodb.2021.06.05.V1
    Liu Zenghong, Xing Xiaogang, Chen Zhaohui, et al. 2023. Twenty years of ocean observations with China Argo. Acta Oceanologica Sinica, 42(2): 1–16, doi: 10.1007/s13131-022-2076-3
    Menemenlis D, Campin J M, Heimbach P, et al. 2008. ECCO2: high resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31: 13–21
    Menemenlis D, Fukumori I, Lee T. 2005. Using Green’s functions to calibrate an ocean general circulation model. Monthly Weather Review, 133: 1224–1240, doi: 10.1175/MWR2912.1
    Menemenlis D, Hill C, Adcrocft A, et al. 2005. NASA supercomputer improves prospects for ocean climate research. Eos Transactions American Geophysical Union, 86(9): 89–96, doi: 10.1029/2005EO090002
    Montenbruck O, Hauschild A, Steigenberger P, et al. 2013. Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solutions, 17(2): 211–222, doi: 10.1007/s10291-012-0272-x
    Nie Zhixi, Wang Baoyang, Wang Zhenjie, et al. 2020. An offshore real-time precise point positioning technique based on a single set of BeiDou short-message communication devices. Journal of Geodesy, 94(9): 78, doi: 10.1007/s00190-020-01411-6
    Ollitrault M, Rannou J P. 2013. ANDRO: An Argo-based deep displacement dataset. Journal of Atmospheric and Oceanic Technology, 30(4): 759–788, doi: 10.1175/JTECH-D-12-00073.1
    Roemmich D, Boebel O, Freeland H, et al. 1998. On the design and implementation of Argo―a global array of profiling floats. GODAE International Project office, 32
    Roemmich D, Gilson J. 2009. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography, 82(2): 81–100, doi: 10.1016/j.pocean.2009.03.004
    Roemmich D, Gilson J, Davis R, et al. 2007. Decadal spinup of the South Pacific subtropical gyre. Journal of Physical Oceanography, 37(2): 162–173, doi: 10.1175/JPO3004.1
    Roemmich D, Johnson G C, Riser S, et al. 2009. The Argo program: observing the global ocean with profiling floats. Oceanography, 22(2): 34–43, doi: 10.5670/oceanog.2009.36
    Shaw P T, Chao S Y, Fu L L. 1999. Sea surface height variations in the South China Sea from satellite altimetry. Oceanologica Acta, 22(1): 1–17, doi: 10.1016/S0399-1784(99)80028-0
    Swallow J C. 1984. Some aspects of the physical oceanography of the Indian Ocean. Deep-Sea Research Part A. Oceanographic Research Papers, 31(6–8): 639–650
    Tamsitt V, Drake H F, Morrison A K, et al. 2017. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nature Communications, 8: 172, doi: 10.1038/s41467-017-00197-0
    van Sebille E, Griffies S M, Abernathey R, et al. 2018. Lagrangian ocean analysis: fundamentals and practices. Ocean Modelling, 121: 49–75, doi: 10.1016/j.ocemod.2017.11.008
    Wang Tianyu, Du Yan, Wang Minyang. 2021. Overlooked current estimation biases arising from the Lagrangian Argo trajectory derivation method. Journal of Physical Oceanography, 52(1): 3–19, doi: 10.1175/JPO-D-20-0287.1
    Wang Tianyu, Gille S T, Mazloff M R, et al. 2018. Numerical simulations to project Argo float positions in the middepth and deep southwest Pacific. Journal of Atmospheric and Oceanic Technology, 35(7): 1425–1440, doi: 10.1175/JTECH-D-17-0214.1
    Wang Tianyu, Gille S T, Mazloff M R, et al. 2020. Eddy-induced acceleration of Argo floats. Journal of Geophysical Research: Oceans, 125: e2019JC016042, doi: 10.1029/2019JC016042
    Wijffels S E, Hall M M, Joyce T, et al. 1998. Multiple deep gyres of the western North Pacific: a WOCE section along 149°E. Journal of Geophysical Research: Oceans, 103(C6): 12985–13009, doi: 10.1029/98JC01016
    Wu Wei, Du Yan, Qian Yuku, et al. 2020. Structure and seasonal variation of the Indian Ocean tropical gyre based on surface drifters. Journal of Geophysical Research: Oceans, 125(5): e2019JC015483, doi: 10.1029/2019JC015483
    Wyrtki K. 1973. An equatorial jet in the Indian Ocean. Science, 181(4096): 262–264, doi: 10.1126/science.181.4096.262
    Xia Yifan, Du Yan. 2022. Mid-depth zonal velocity in the southern tropical Indian Ocean: striation-like structures and their dynamics. Journal of Physical Oceanography, 52(11): 2825–2840, doi: 10.1175/JPO-D-21-0222.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (45) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return